嗜热链球菌
热稳定性
阿拉伯糖
半乳糖
抗氧化剂
食品科学
化学
糖
生物化学
酶
发酵
乳酸菌
木糖
作者
Yang Zhou,Yanhua Cui,Chao Suo,Qian Wang,Xiaojun Qu
标识
DOI:10.1016/j.ijbiomac.2021.10.047
摘要
Streptococcus thermophilus CS6 could produce the high exopolysaccharide (EPS) level in optimized skimmed milk medium. However, physicochemical properties and structure of these polymers have not been fully characterized. In this study, two purified fractions (EPS-M1 and EPS-M2) exhibited good rheology, thermostability and antioxidant activity. Further monosaccharide composition, molecular weight and NMR analysis indicated EPS-M2 was composed of galactose, arabinose and glucose (5:2.5:1) with an average molecular weight of 2.22 × 104 Da and its suggested repeating unit was →6)-[α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1→. High EPS production relied on the expression of eps gene cluster and key enzymes of nucleotide sugar metabolism. Overall, EPS-M2 from a potential functional starter S. thermophilus CS6 provided opportunities for natural thickener, stabilizer, and antioxidant agent exploration in the food industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI