Propagation Enhanced Neural Message Passing for Graph Representation Learning

计算机科学 消息传递 图形 理论计算机科学 人工神经网络 代表(政治) 人工智能 分布式计算 政治学 政治 法学
作者
Xiaolong Fan,Maoguo Gong,Yue Wu,A. K. Qin,Yu Xie
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:16
标识
DOI:10.1109/tkde.2021.3102964
摘要

Graph Neural Network (GNN) is capable of applying deep neural networks to graph domains. Recently, Message Passing Neural Networks (MPNNs) have been proposed to generalize several existing graph neural networks into a unified framework. For graph representation learning, MPNNs first generate discriminative node representations using the message passing function and then read from the node representation space to generate a graph representation using the readout function. In this paper, we analyze the representation capacity of the MPNNs for aggregating graph information and observe that the existing approaches ignore the self-loop for graph representation learning, leading to limited representation capacity. To alleviate this issue, we introduce a simple yet effective propagation enhanced extension, Self-Connected Neural Message Passing (SC-NMP), which aggregates the node representations of the current step and the graph representation of the previous step. To further improve the information flow, we also propose a Densely Self-Connected Neural Message Passing (DSC-NMP) that connects each layer to every other layer in a feed-forward fashion. Both proposed architectures are applied at each layer and the graph representation can then be used as input into all subsequent layers. Remarkably, combining these two architectures with existing GNN variants can improve these models' performance for graph representation learning. Extensive experiments on various benchmark datasets strongly demonstrate the effectiveness, leading to superior performance for graph classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助可yi采纳,获得10
刚刚
DZ发布了新的文献求助10
刚刚
1秒前
1秒前
sijin1216完成签到,获得积分10
1秒前
青春完成签到 ,获得积分10
2秒前
oo关注了科研通微信公众号
4秒前
烟花应助yema采纳,获得10
4秒前
4秒前
gaberella发布了新的文献求助10
5秒前
君君发布了新的文献求助10
5秒前
ikea1984发布了新的文献求助10
6秒前
852应助微笑采纳,获得10
6秒前
情怀应助微笑采纳,获得10
6秒前
华仔应助微笑采纳,获得10
6秒前
顾矜应助微笑采纳,获得10
6秒前
CipherSage应助微笑采纳,获得20
6秒前
无花果应助微笑采纳,获得10
6秒前
6秒前
orixero应助XYX采纳,获得30
7秒前
8秒前
李爱国应助称心曼安采纳,获得10
8秒前
9秒前
9秒前
10秒前
11秒前
糯糯发布了新的文献求助10
11秒前
KKK完成签到 ,获得积分10
12秒前
12秒前
13秒前
可yi发布了新的文献求助10
14秒前
16秒前
sherryyijia发布了新的文献求助10
16秒前
17秒前
illusion完成签到,获得积分10
17秒前
晨夕风完成签到 ,获得积分20
17秒前
一只大新发布了新的文献求助10
17秒前
小岚花完成签到 ,获得积分10
17秒前
坚强不言完成签到,获得积分10
18秒前
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769859
求助须知:如何正确求助?哪些是违规求助? 3314919
关于积分的说明 10174140
捐赠科研通 3030186
什么是DOI,文献DOI怎么找? 1662685
邀请新用户注册赠送积分活动 795067
科研通“疑难数据库(出版商)”最低求助积分说明 756560