Topological metasurfaces for symmetry-protected electromagnetic line waves

对称(几何) 物理 拓扑(电路) 超材料 电磁辐射 直线(几何图形) 光学 几何学 数学 电气工程 工程类
作者
Dia’aaldin J. Bisharat,Daniel F. Sievenpiper
标识
DOI:10.1117/12.2529727
摘要

The discovery of topological condensed-matter systems has promoted extensive research on analogous classical photonic systems, motivated by the prospect of backscattering-immune wave propagation. So far, photonic topological insulators have mainly relied on engineering bulk modes in photonic crystals and waveguide arrays in two-dimensional systems. However, these realizations suffer from bulky structures, intricate design/material requirements, or limited operational bandwidth. Here, we present symmetry-protected topological states akin to quantum spin-Hall and valley-Hall effects by engineering surface modes over open-boundary metallic metasurfaces of infinitesimal thickness. As a result, the proposed structures support robust gapless edge states, which are confined and guided along a one-dimensional line rather than a surface interface. To emulate the spin degree of freedom, we exploit the electromagnetic-duality symmetry by stacking two complementary metasurfaces. Straightforwardly, the modal degeneracies are formed at high-symmetry K/K′ points due to the use of hexagonal unit cells, while the strong effective magneto-electric coupling inherent to the overlapped metasurfaces opens a wide non-trivial bandgap. To emulate the valley degree of freedom, on the other hand, we exploit the mirror symmetry of the structure by reducing the lattice symmetry of the hexagonal cell-based metasurface, which has either inductive or capacitive response, into C3υ point symmetry. Consequently, the degeneracy between the two valleys in reciprocal space is lifted. Owing to the simplicity, compactness, tunability, and openboundary nature of the proposed system, it constitutes an attractive tabletop platform for the study of classical topological phases, as well as for practical applications advancing the potential of photonic topological insulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助maomao采纳,获得10
刚刚
稀罕你发布了新的文献求助10
1秒前
研友_VZG7GZ应助毛豆爸爸采纳,获得10
1秒前
naonao完成签到,获得积分20
1秒前
摆烂的实验室打工人完成签到,获得积分10
1秒前
Jenny发布了新的文献求助50
3秒前
4秒前
hehe完成签到,获得积分20
4秒前
naonao发布了新的文献求助10
5秒前
Glufo完成签到,获得积分10
5秒前
6秒前
qqqqqq发布了新的文献求助10
7秒前
忘羡222发布了新的文献求助30
7秒前
紫菜发布了新的文献求助10
9秒前
13秒前
13秒前
独特亦旋完成签到,获得积分20
14秒前
今后应助qqqqqq采纳,获得10
15秒前
小马甲应助飞羽采纳,获得10
15秒前
星辰大海应助西内!卡Q因采纳,获得10
16秒前
16秒前
彬彬发布了新的文献求助10
17秒前
太叔捕完成签到,获得积分10
17秒前
高磊发布了新的文献求助10
18秒前
RH完成签到,获得积分10
18秒前
zhangzhen完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助zfzf0422采纳,获得10
21秒前
Wendy1204发布了新的文献求助10
22秒前
22秒前
lydy1993完成签到,获得积分10
23秒前
24秒前
滴滴哒哒完成签到 ,获得积分10
24秒前
SciGPT应助波波玛奇朵采纳,获得10
26秒前
戏言121完成签到,获得积分10
26秒前
迷人的映雁完成签到,获得积分10
27秒前
27秒前
美丽的之双完成签到,获得积分10
28秒前
阿会完成签到,获得积分10
28秒前
wqm完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824