神经炎症
间充质干细胞
小胶质细胞
神经发生
双皮质醇
癌症研究
脑损伤
移植
肿瘤坏死因子α
TLR4型
促炎细胞因子
炎症
免疫学
化学
医学
细胞生物学
生物
内科学
齿状回
中枢神经系统
作者
Shanshan Ma,Yaping Wang,Xinkui Zhou,Zhe Li,Zhenkun Zhang,Yingying Wang,Tuanjie Huang,Yanting Zhang,Jijing Shi,Fangxia Guan
标识
DOI:10.1021/acschemneuro.0c00268
摘要
The inflammatory microenvironment in a lesion is not conducive to the survival of stem cells. Improving the inflammatory microenvironment may be an alternative strategy to enhance the efficacy of stem cells. We evaluated the therapeutic effect and molecular mechanism of mitsugumin53 (MG53) on lipopolysaccharide (LPS)-induced damage in human umbilical cord mesenchymal stem cells (hUC-MSCs) and in C57/BL6 mice. MG53 significantly promoted the proliferation and migration of hUC-MSCs, protected hUC-MSCs against LPS-induced apoptosis and mitochondrial dysfunction, and reversed LPS-induced inflammatory cytokine release. Furthermore, MG53 combined with hUC-MSCs transplantation improved LPS-induced memory impairment and activated neurogenesis by promoting the migration of hUC-MSCs and enhancing βIII-tubulin and doublecortin (DCX) expression. MG53 protein combined with hUC-MSCs improved the M1/M2 phenotype polarization of microglia accompanied by lower inducible nitric oxide synthase (iNOS) expression and higher arginase 1 (ARG1) expression. MG53 significantly suppressed the expression of tumor necrosis factor α (TNF-α), Toll-like receptor 4 (TLR4), nucleotide oligomerization domain-like receptor protein 3 (NLRP3), cleaved-caspase-1, and interleukin (IL)-1β to alleviate LPS-induced neuroinflammation on hUC-MSCs and C57/BL6 mice. In conclusion, our results indicated that MG53 could protect hUC-MSCs against LPS-induced inflammatory damage and facilitate their efficacy in LPS-treated C57/BL6 mice partly by inhibiting the NLRP3/caspase-1/IL-1β axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI