Automatic Debiased Machine Learning of Causal and Structural Effects

借记 估计员 因果推理 人工智能 回归 Lasso(编程语言) 计量经济学 机器学习 计算机科学 正规化(语言学) 推论 选择偏差 算法 统计 数学 心理学 认知科学 万维网
作者
Victor Chernozhukov,Whitney K. Newey,Rahul Singh
出处
期刊:Cornell University - arXiv 被引量:14
摘要

Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high dimensional methods. In addition to providing the bias correction we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
1秒前
2秒前
rstorz完成签到,获得积分10
2秒前
wzxxxx发布了新的文献求助10
3秒前
方方方方神完成签到,获得积分20
3秒前
WiLDPiG433完成签到,获得积分10
3秒前
4秒前
Jasper应助椰子采纳,获得10
4秒前
Stormi发布了新的文献求助10
4秒前
jym发布了新的文献求助10
4秒前
4秒前
Maigret完成签到,获得积分10
5秒前
两飞飞完成签到,获得积分10
5秒前
5秒前
韭菜盒子发布了新的文献求助10
6秒前
ximu完成签到,获得积分20
6秒前
CLN完成签到,获得积分10
6秒前
SciGPT应助单薄凌蝶采纳,获得50
7秒前
7秒前
111完成签到,获得积分10
7秒前
小马甲应助117采纳,获得10
7秒前
甜甜的猫咪完成签到,获得积分10
7秒前
7秒前
66应助马佳凯采纳,获得10
7秒前
8秒前
是述不是沭完成签到,获得积分10
8秒前
9秒前
lei完成签到,获得积分10
9秒前
瘦瘦的背包完成签到,获得积分10
10秒前
10秒前
赘婿应助Elaine采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研小白完成签到,获得积分10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
11秒前
11秒前
思源应助科研通管家采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得50
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740