The compatible performance of three-dimensional SiO2–ZnO amorphous photonic crystals in adjustable structural color and low infrared emissivity

发射率 材料科学 红外线的 无定形固体 低发射率 涂层 光电子学 结构着色 光子晶体 光子学 旋涂 可见光谱 光学 纳米技术 化学 结晶学 物理
作者
Yun Yang,Shujuan Tan,Gang Fang,Zhinan Yang,Yongchao Li,Chaowen Yang
出处
期刊:Optical Materials [Elsevier]
卷期号:107: 110105-110105 被引量:13
标识
DOI:10.1016/j.optmat.2020.110105
摘要

In high temperature environments, most low-emissivity coatings show monotonous and dull colors which make the visible-infrared compatible stealth still challenging. To achieve a wide range of color selection, in this work, three-dimensional (3D) SiO2–ZnO amorphous photonic crystals (APCs) are manufactured by electrodepositing Zn2+ into 3D SiO2 APCs, investigating the compatibility of adjustable structural color and low emissivity. A variety of structural colors could be easily obtained by modulating the diameter of SiO2 nanospheres. In addition, the experimental parameters of spin-coating counts and electrodeposited time are studied to optimize the compatible performance of color and infrared emissivity. The results indicate that the doped ZnO effectively reduces the infrared emissivity in 3–5 μm waveband without changing the structural color of SiO2 APCs. However, excess electrodeposited time of ZnO would cause the structural color faded gradually because of the increased refractive index and destroyed periodical structure. The adequate spin-coating counts is helpful for the bright structural color, but excess spin-coating counts would induce more defects in periodic structure and result in more absorption in 3–5 μm waveband. When the spin-coating counts and electrodeposition content of Zn2+ in the SiO2 APCs are properly modulated in this study, the SiO2–ZnO APCs can exhibit a good compatibility in desired structural color and low infrared emissivity (~0.4), as well as excellent thermal stability. This study provides a new approach for the design of multi-spectrum compatible stealth materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liu完成签到 ,获得积分10
刚刚
刚刚
1秒前
瑾笙关注了科研通微信公众号
1秒前
4秒前
5秒前
q1010611084完成签到 ,获得积分10
5秒前
桑丘发布了新的文献求助10
6秒前
simon发布了新的文献求助10
6秒前
詹姆斯发布了新的文献求助10
6秒前
冯冯完成签到 ,获得积分10
7秒前
7秒前
赵梓函发布了新的文献求助10
8秒前
8秒前
失眠语梦完成签到,获得积分10
10秒前
shinysparrow应助笨小孩采纳,获得200
11秒前
11秒前
12秒前
FashionBoy应助赵梓函采纳,获得10
12秒前
Lynn完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
香辣曲奇完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
务实绿柏完成签到,获得积分10
17秒前
18秒前
19秒前
hs是坏蛋发布了新的文献求助10
19秒前
uniphoton完成签到,获得积分10
20秒前
21秒前
fsw完成签到,获得积分10
21秒前
谷雨下完成签到,获得积分10
21秒前
辰星发布了新的文献求助10
21秒前
21秒前
22秒前
hyx-dentist发布了新的文献求助10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291