(Keynote) The Role of Interlayer Chemistry in Li-Metal Growth through a Garnet-Type Solid Electrolyte

电解质 材料科学 阳极 电化学 沉积(地质) 化学工程 金属 电镀(地质) 箔法 剥离(纤维) 电极 金属锂 纳米技术 化学 冶金 复合材料 物理化学 地质学 沉积物 地球物理学 工程类 生物 古生物学
作者
Sewon Kim,Changhoon Jung,Hyun Seok Kim,Kisuk Kang
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (5): 977-977
标识
DOI:10.1149/ma2020-025977mtgabs
摘要

Although garnet-type LLZO has been considered one of the most promising solid electrolyte for solid-state batteries (SSB), the instability of electrode/LLZO interface has been obstacle for the practical application of LLZO into the batteries.[1] Thus, a fundamental understanding of the lithium deposition behavior in the interface would aid in elucidating the underlying mechanisms of the short circuit failure due to unstable interface and designing the interface in SSBs. Herein, we successfully used an in operando microscopy technique to probe Li deposition through the LLZO electrolyte in an anode-free solid-state battery setup. More importantly, we carefully examined the interface with artificial interlayers, which revealed that Li plating is strongly dominated by the kinetics of alloying and precipitation through the metal interlayer. In addition, we confirmed that the interlayer also affects the sequential stripping process, influencing the electrochemical performance of the cell. Supported by these intriguing observations, we propose the dynamic roles of the interlayer during battery operation: as a buffer layer and a seed layer. The in-house cell and microscope system shown in Figure 1a were used for the in operando observations of Li deposition on LLZO. Li foil was attached to the bottom of the LLZO pellet and the top surface was pre-coated with the selected interlayer metal. We investigated electrochemical Li deposition behavior in the absence of an interlayer metal. Li metal begins to appear in island shapes under an applied galvanostatic current (0.1 mA cm-2) and continues to grow over time as shown in Figure 1b. It is worth noting that all of the small Li-metal islands first form at pre-existing defects on the pristine LLZO surface during initial lithiation and Li grows preferably at these islands during the subsequent plating. When the metal interlayer was introduced, the deposition behavior was significantly altered. With 30-nm-thick Au layer, we observed that Au interlayer changed color under electrochemical bias, which is indicative of the formation of a Li-Au alloy. These color changes are followed by the formation of island-type small precipitations. From this observation, we propose that Au interlayer plays the unexpected role of a “buffer layer”, which dynamically functions as a medium for Li redistribution by propagating alloying reactions. Given the proposed new role of the interlayer, we expected the Li-metal deposition behavior to critically depend on the thermodynamic and kinetic properties of the interlayer metal and its alloying nature with Li. Si and Ag were chosen in this study, considering the availability of various alloys and the appreciable Li diffusivities in their alloys. When Si layer is applied (Figure 2a), the color changed during the early stages as gold, but subsequent behavior was noticeably different from that of the Au; Li metal preferentially precipitates at only a few sites, and whisker-shaped Li metal rapidly grows at these sites. On the other hand, in Ag interlayer (Figure 2b), the alloying reaction occurs first, followed by the uniform formation of numerous small nuclei. Interestingly, the two reactions occur nearly simultaneously, implying that both the alloying reaction and precipitation in the alloy are so fast that the sequential processes are unable to be distinguished. Regarding on this, the metal interlayers can be regarded as seed matrix for lithium precipitation. Further, Ag interlayer is more reversible upon Li stripping than Au or Si. The better efficacy of the lithium deposition/stripping process with Ag interlayer was further validated by comparative electrochemical testing of two electrode cells constructed with ‘100-nm-thick metal layer│LLZO │Li’ configuration. The results show that the coulombic efficiencies of cells using the various interlayers are closely related to the Li deposition and stripping behavior. The cell with Ag layer, which induces the most-uniform and reversible Li deposition among the tested metals, exhibits the highest efficiency of 71%, while that with Si layer shows 28%. Thus, it indicates that the interlayer can significantly affect the electrochemical performance of anode-free SSBs that employ solid electrolytes by regulating lithiation and de-lithiation behavior at the interface. Considering the ease of interlayer deposition on the LLZO surface and its wide applicability, we expect that our findings will provide useful guidelines for securing optimal interfaces for SSBs. REFERENCES [1] Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J., ACS Applied Materials & Interfaces 9, 3808-3816. (2017) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助熊二采纳,获得10
9秒前
小周完成签到 ,获得积分10
11秒前
高高完成签到 ,获得积分10
12秒前
吨吨完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得20
21秒前
24秒前
26秒前
念姬完成签到 ,获得积分10
26秒前
Shuhe_Gong完成签到 ,获得积分10
28秒前
31秒前
熊二发布了新的文献求助10
32秒前
fogsea完成签到,获得积分0
36秒前
包容的忆灵完成签到 ,获得积分10
38秒前
鲲鹏完成签到 ,获得积分10
39秒前
40秒前
xbq完成签到,获得积分10
41秒前
不器完成签到 ,获得积分10
43秒前
生椰拿铁完成签到 ,获得积分10
44秒前
45秒前
49秒前
53秒前
季末默相依完成签到,获得积分10
53秒前
悄悄完成签到 ,获得积分10
53秒前
xbq发布了新的文献求助10
55秒前
bing完成签到 ,获得积分10
55秒前
clock完成签到 ,获得积分10
56秒前
苗条绝义发布了新的文献求助10
58秒前
美好灵寒完成签到 ,获得积分10
1分钟前
精明云朵完成签到 ,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
ANT完成签到 ,获得积分10
1分钟前
栗子味的茶完成签到 ,获得积分10
1分钟前
唐云炳完成签到 ,获得积分10
1分钟前
lyy完成签到 ,获得积分10
1分钟前
荔枝完成签到 ,获得积分10
1分钟前
轻松的鸿煊完成签到 ,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555861
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391158
捐赠科研通 2831150
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890