作者
Thássio Mesquita,Rui Zhang,Geoffrey de Couto,Jackelyn Valle,Lizbeth Sanchez,Robert W. Rogers,Kevin Holm,Weixin Liu,Eduardo Marbán,Eugenio Cingolani
摘要
Background Although ∼20% of the elderly population develops atrial fibrillation (AF), little is known about the mechanisms. Heart failure with preserved ejection fraction (HFpEF), which is associated with AF, is more common in aged women than in men. Objective The purpose of this study was to identify potential mechanisms of AF in an age-related HFpEF model. Methods In aged female Fischer F344 rats (21- to 24-month-old), which are prone to HFpEF, we induced AF by atrial pacing. Young Fischer F344 female rats (3- to 4-month-old) and age-matched Sprague Dawley female rats (27-month-old) served as controls. Phenotyping included echocardiography to assess left ventricular structure/function; in vivo electrophysiology and ex vivo high-resolution optical mapping to assess AF vulnerability; systemic and atrial inflammatory profiling; atrial histology; and expression of inflammasome signaling proteins. Results Aged rats developed left ventricular hypertrophy, left atrial enlargement, diastolic dysfunction, and pulmonary congestion, without ejection fraction impairment, thus meeting the criteria for HFpEF. Increased serum inflammatory markers, hypertension, and obesity further characterize aged females. Sinoatrial and atrioventricular node dysfunction was associated with the high inducibility of AF in aged rats. Ex vivo electrical activation mapping revealed abnormal β-adrenergic responsiveness and slowed conduction velocity. Atrial inflammasome signaling was enhanced in aged rats, which may contribute to fibrotic remodeling and high AF susceptibility. Conclusion Together, our data demonstrate that aging-related atrial remodeling and HFpEF are associated with atrial enlargement, fibrosis, conduction abnormalities, and nodal dysfunction, favoring a substrate conducive to AF. Although ∼20% of the elderly population develops atrial fibrillation (AF), little is known about the mechanisms. Heart failure with preserved ejection fraction (HFpEF), which is associated with AF, is more common in aged women than in men. The purpose of this study was to identify potential mechanisms of AF in an age-related HFpEF model. In aged female Fischer F344 rats (21- to 24-month-old), which are prone to HFpEF, we induced AF by atrial pacing. Young Fischer F344 female rats (3- to 4-month-old) and age-matched Sprague Dawley female rats (27-month-old) served as controls. Phenotyping included echocardiography to assess left ventricular structure/function; in vivo electrophysiology and ex vivo high-resolution optical mapping to assess AF vulnerability; systemic and atrial inflammatory profiling; atrial histology; and expression of inflammasome signaling proteins. Aged rats developed left ventricular hypertrophy, left atrial enlargement, diastolic dysfunction, and pulmonary congestion, without ejection fraction impairment, thus meeting the criteria for HFpEF. Increased serum inflammatory markers, hypertension, and obesity further characterize aged females. Sinoatrial and atrioventricular node dysfunction was associated with the high inducibility of AF in aged rats. Ex vivo electrical activation mapping revealed abnormal β-adrenergic responsiveness and slowed conduction velocity. Atrial inflammasome signaling was enhanced in aged rats, which may contribute to fibrotic remodeling and high AF susceptibility. Together, our data demonstrate that aging-related atrial remodeling and HFpEF are associated with atrial enlargement, fibrosis, conduction abnormalities, and nodal dysfunction, favoring a substrate conducive to AF.