Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts

肌成纤维细胞 细胞外基质 细胞生物学 转化生长因子 成纤维细胞 转化生长因子β 纤维化 心脏纤维化 生物 细胞外 细胞分化 免疫学 病理 细胞培养 医学 生物化学 遗传学 基因
作者
Nathan Cho,Shadi E Razipour,Megan L. McCain
出处
期刊:Experimental Biology and Medicine [SAGE]
卷期号:243 (7): 601-612 被引量:56
标识
DOI:10.1177/1535370218761628
摘要

Cardiac fibroblasts and their activated derivatives, myofibroblasts, play a critical role in wound healing after myocardial injury and often contribute to long-term pathological outcomes, such as excessive fibrosis. Thus, defining the microenvironmental factors that regulate the phenotype of cardiac fibroblasts and myofibroblasts could lead to new therapeutic strategies. Both chemical and biomechanical cues have previously been shown to induce myofibroblast differentiation in many organs and species. For example, transforming growth factor beta 1, a cytokine secreted by neutrophils, and rigid extracellular matrix environments have both been shown to promote differentiation. However, the relative contributions of transforming growth factor beta 1 and extracellular matrix rigidity, two hallmark cues in many pathological myocardial microenvironments, to the phenotype of human cardiac fibroblasts are unclear. We hypothesized that transforming growth factor beta 1 and rigid extracellular matrix environments would potentially have a synergistic effect on the differentiation of human cardiac fibroblasts to myofibroblasts. To test this, we seeded primary human adult cardiac fibroblasts onto coverslips coated with polydimethylsiloxane of various elastic moduli, introduced transforming growth factor beta 1, and longitudinally quantified cell phenotype by measuring expression of α-smooth muscle actin, the most robust indicator of myofibroblasts. Our data indicate that, although extracellular matrix rigidity influenced differentiation after one day of transforming growth factor beta 1 treatment, ultimately transforming growth factor beta 1 superseded extracellular matrix rigidity as the primary regulator of myofibroblast differentiation. We also measured expression of POSTN, FAP, and FSP1, proposed secondary indicators of fibroblast/myofibroblast phenotypes. Although these genes partially trended with α-smooth muscle actin expression, they were relatively inconsistent. Finally, we demonstrated that activated myofibroblasts incompletely revert to a fibroblast phenotype after they are re-plated onto new surfaces without transforming growth factor beta 1, suggesting differentiation is partially reversible. Our results provide new insights into how microenvironmental cues affect human cardiac fibroblast differentiation in the context of myocardial pathology, which is important for identifying effective therapeutic targets and dictating supporting cell phenotypes for engineered human cardiac disease models. Impact statement Heart disease is the leading cause of death worldwide. Many forms of heart disease are associated with fibrosis, which increases extracellular matrix (ECM) rigidity and compromises cardiac output. Fibrotic tissue is synthesized primarily by myofibroblasts differentiated from fibroblasts. Thus, defining the cues that regulate myofibroblast differentiation is important for understanding the mechanisms of fibrosis. However, previous studies have focused on non-human cardiac fibroblasts and have not tested combinations of chemical and mechanical cues. We tested the effects of TGF-β1, a cytokine secreted by immune cells after injury, and ECM rigidity on the differentiation of human cardiac fibroblasts to myofibroblasts. Our results indicate that differentiation is initially influenced by ECM rigidity, but is ultimately superseded by TGF-β1. This suggests that targeting TGF-β signaling pathways in cardiac fibroblasts may have therapeutic potential for attenuating fibrosis, even in rigid microenvironments. Additionally, our approach can be leveraged to engineer more precise multi-cellular human cardiac tissue models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温东完成签到,获得积分10
1秒前
CodeCraft应助kk采纳,获得10
2秒前
谨慎的雍发布了新的文献求助10
3秒前
4秒前
脑洞疼应助Evan采纳,获得10
4秒前
乐乐发布了新的文献求助10
4秒前
7秒前
7秒前
xlx发布了新的文献求助10
8秒前
丝竹丛中墨未干完成签到,获得积分10
8秒前
chaos完成签到,获得积分10
9秒前
10秒前
大个应助肯瑞恩哭哭采纳,获得10
10秒前
11秒前
琅千袭完成签到,获得积分10
11秒前
11秒前
13秒前
水若琳完成签到,获得积分10
13秒前
didi发布了新的文献求助10
13秒前
英姑应助由哎采纳,获得10
14秒前
科研小菜鸟完成签到,获得积分20
14秒前
luna0111发布了新的文献求助10
14秒前
小二郎应助斯文谷秋采纳,获得10
15秒前
16秒前
16秒前
琅千袭发布了新的文献求助10
17秒前
12发布了新的文献求助10
17秒前
18秒前
18秒前
脑洞疼应助ccciii采纳,获得10
19秒前
华仔应助科研小白采纳,获得10
20秒前
小蘑菇应助songf11采纳,获得10
21秒前
21秒前
酷波er应助健壮的蘑菇采纳,获得10
22秒前
大帅比发布了新的文献求助10
23秒前
23秒前
易生发布了新的文献求助10
23秒前
美好远望发布了新的文献求助10
25秒前
28秒前
xlx完成签到,获得积分10
30秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
Evolution 1100
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 550
Assessment of Ultrasonographic Measurement of Inferior Vena Cava Collapsibility Index in The Prediction of Hypotension Associated with Tourniquet Release in Total Knee Replacement Surgeries under Spinal Anesthesia 500
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2981308
求助须知:如何正确求助?哪些是违规求助? 2642696
关于积分的说明 7131118
捐赠科研通 2276049
什么是DOI,文献DOI怎么找? 1207286
版权声明 592084
科研通“疑难数据库(出版商)”最低求助积分说明 589801