已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Incorporating brand variability into classification of edible oils by Raman spectroscopy

食用油 拉曼光谱 化学计量学 化学 分析化学(期刊) 数学 模式识别(心理学) 材料科学 色谱法 食品科学 人工智能 计算机科学 物理 光学
作者
Francis Kwofie,Barry K. Lavine,J. M. Ottaway,Karl S. Booksh
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (7) 被引量:10
标识
DOI:10.1002/cem.3173
摘要

Abstract Two‐hundred and fifteen Raman spectra of 15 edible oils or blends of edible oils from 53 samples spanning multiple brands purchased over 3 years were investigated using a genetic algorithm for spectral pattern recognition. Using a hierarchical approach to classification, the 15 edible oils could be divided into two groups based on their degree of unsaturation. While edible oils from any particular batch within a class are well clustered and can be differentiated from other varieties of edible oils that are also from a single source, incorporating uncontrolled variability from sources (by purchasing edible oils under different brand names) and seasons (by purchasing edible oils over a 3‐year period) presented a far more challenging classification problem for edible oils within the same group. The between‐source and yearly variability within one class of edible oils is often comparable to differences between the average spectra of the different varieties of edible oils, thereby preventing either a reliable classification of the edible oils or the detection of adulterants in an edible oil if a single model, spanning all sources and years of oils, is to be constructed. The novelty of this study arises from the incorporation of edible oils gathered systematically over the span of 3 years, introducing a heretofore unseen variance to the chemical compositions of the edible oils that are being classified. This is the first time that many different edible oils and commercially available brands thereof have been classified simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古惑仔完成签到 ,获得积分10
刚刚
pxin发布了新的文献求助10
1秒前
yoongi发布了新的文献求助10
4秒前
4秒前
慕青应助蛋肠加蛋采纳,获得10
5秒前
蛋丽完成签到 ,获得积分10
6秒前
上好完成签到,获得积分10
8秒前
yhh发布了新的文献求助10
11秒前
11秒前
11秒前
益生菌小哥关注了科研通微信公众号
13秒前
洋yang关注了科研通微信公众号
14秒前
15秒前
失眠傲芙发布了新的文献求助10
15秒前
1111发布了新的文献求助10
15秒前
香蕉觅云应助幸运小冲鸭采纳,获得30
16秒前
fang完成签到 ,获得积分10
19秒前
20秒前
刘小源完成签到 ,获得积分10
23秒前
衍夏关注了科研通微信公众号
23秒前
23秒前
司马立果发布了新的文献求助10
25秒前
英姑应助羊水彤采纳,获得100
25秒前
碧蓝笑槐完成签到,获得积分10
26秒前
麦兜完成签到,获得积分10
26秒前
刻苦的砖头完成签到 ,获得积分10
27秒前
hjmx发布了新的文献求助10
28秒前
阳阳阳完成签到,获得积分10
30秒前
32秒前
笨笨的凡梅完成签到,获得积分10
32秒前
染染完成签到,获得积分10
33秒前
tj完成签到,获得积分10
35秒前
35秒前
阳阳阳发布了新的文献求助10
36秒前
思源应助终陌采纳,获得10
36秒前
38秒前
zhangDL发布了新的文献求助10
38秒前
ding应助只要两毛九采纳,获得30
39秒前
41秒前
Yuiv发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271