Incorporating brand variability into classification of edible oils by Raman spectroscopy

食用油 拉曼光谱 化学计量学 化学 分析化学(期刊) 数学 模式识别(心理学) 材料科学 色谱法 食品科学 人工智能 计算机科学 物理 光学
作者
Francis Kwofie,Barry K. Lavine,J. M. Ottaway,Karl S. Booksh
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (7) 被引量:10
标识
DOI:10.1002/cem.3173
摘要

Abstract Two‐hundred and fifteen Raman spectra of 15 edible oils or blends of edible oils from 53 samples spanning multiple brands purchased over 3 years were investigated using a genetic algorithm for spectral pattern recognition. Using a hierarchical approach to classification, the 15 edible oils could be divided into two groups based on their degree of unsaturation. While edible oils from any particular batch within a class are well clustered and can be differentiated from other varieties of edible oils that are also from a single source, incorporating uncontrolled variability from sources (by purchasing edible oils under different brand names) and seasons (by purchasing edible oils over a 3‐year period) presented a far more challenging classification problem for edible oils within the same group. The between‐source and yearly variability within one class of edible oils is often comparable to differences between the average spectra of the different varieties of edible oils, thereby preventing either a reliable classification of the edible oils or the detection of adulterants in an edible oil if a single model, spanning all sources and years of oils, is to be constructed. The novelty of this study arises from the incorporation of edible oils gathered systematically over the span of 3 years, introducing a heretofore unseen variance to the chemical compositions of the edible oils that are being classified. This is the first time that many different edible oils and commercially available brands thereof have been classified simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oxs完成签到 ,获得积分10
1秒前
1秒前
Nero完成签到,获得积分10
2秒前
无知的小能手完成签到,获得积分10
2秒前
Dhrshb完成签到,获得积分10
4秒前
马德里就思议完成签到,获得积分10
5秒前
5秒前
Lucas应助小肚肚采纳,获得10
6秒前
9秒前
四夕发布了新的文献求助10
10秒前
Song发布了新的文献求助10
10秒前
WNL关闭了WNL文献求助
11秒前
12秒前
13秒前
Song完成签到,获得积分10
14秒前
Flame完成签到 ,获得积分10
15秒前
Dali发布了新的文献求助10
15秒前
Zbzb完成签到,获得积分20
16秒前
16秒前
Cc发布了新的文献求助80
17秒前
19秒前
筱潇应助四夕采纳,获得10
19秒前
21秒前
高大美发布了新的文献求助20
21秒前
charitial发布了新的文献求助10
24秒前
Flame关注了科研通微信公众号
24秒前
五指鸭完成签到,获得积分10
25秒前
25秒前
回来完成签到,获得积分10
27秒前
28秒前
28秒前
Dreamsli发布了新的文献求助10
28秒前
28秒前
子不语完成签到 ,获得积分10
31秒前
31秒前
科目三应助zzz采纳,获得10
32秒前
35秒前
35秒前
36秒前
李国民完成签到,获得积分20
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260219
求助须知:如何正确求助?哪些是违规求助? 2901451
关于积分的说明 8315734
捐赠科研通 2571024
什么是DOI,文献DOI怎么找? 1396784
科研通“疑难数据库(出版商)”最低求助积分说明 653580
邀请新用户注册赠送积分活动 631997