Incorporating brand variability into classification of edible oils by Raman spectroscopy

食用油 拉曼光谱 化学计量学 化学 分析化学(期刊) 数学 模式识别(心理学) 材料科学 色谱法 食品科学 人工智能 计算机科学 物理 光学
作者
Francis Kwofie,Barry K. Lavine,J. M. Ottaway,Karl S. Booksh
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (7) 被引量:10
标识
DOI:10.1002/cem.3173
摘要

Abstract Two‐hundred and fifteen Raman spectra of 15 edible oils or blends of edible oils from 53 samples spanning multiple brands purchased over 3 years were investigated using a genetic algorithm for spectral pattern recognition. Using a hierarchical approach to classification, the 15 edible oils could be divided into two groups based on their degree of unsaturation. While edible oils from any particular batch within a class are well clustered and can be differentiated from other varieties of edible oils that are also from a single source, incorporating uncontrolled variability from sources (by purchasing edible oils under different brand names) and seasons (by purchasing edible oils over a 3‐year period) presented a far more challenging classification problem for edible oils within the same group. The between‐source and yearly variability within one class of edible oils is often comparable to differences between the average spectra of the different varieties of edible oils, thereby preventing either a reliable classification of the edible oils or the detection of adulterants in an edible oil if a single model, spanning all sources and years of oils, is to be constructed. The novelty of this study arises from the incorporation of edible oils gathered systematically over the span of 3 years, introducing a heretofore unseen variance to the chemical compositions of the edible oils that are being classified. This is the first time that many different edible oils and commercially available brands thereof have been classified simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zwjhbz完成签到,获得积分10
2秒前
科研通AI6.1应助陈龙采纳,获得10
2秒前
赵儒浩发布了新的文献求助10
2秒前
3秒前
4秒前
fyukgfdyifotrf完成签到,获得积分10
4秒前
共享精神应助懒洋洋采纳,获得10
6秒前
拼死拼活完成签到,获得积分10
7秒前
林林完成签到 ,获得积分10
7秒前
hhh发布了新的文献求助10
8秒前
8秒前
9秒前
11秒前
终极007完成签到 ,获得积分10
11秒前
安宁完成签到 ,获得积分10
12秒前
清秀书兰完成签到 ,获得积分10
12秒前
彭于晏应助赵儒浩采纳,获得10
12秒前
曾俊宇完成签到 ,获得积分10
12秒前
12秒前
14秒前
zx发布了新的文献求助10
14秒前
拼死拼活发布了新的文献求助10
14秒前
15秒前
给我好好读书完成签到,获得积分10
16秒前
codwest完成签到,获得积分10
16秒前
诸青梦完成签到 ,获得积分10
17秒前
思源应助hhh采纳,获得10
17秒前
Ruby发布了新的文献求助10
19秒前
科研通AI2S应助鳗鱼摇伽采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助30
22秒前
Autaro完成签到,获得积分10
22秒前
23秒前
深情安青应助依紫采纳,获得10
25秒前
在水一方应助ss采纳,获得10
26秒前
26秒前
26秒前
lllll发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838