Incorporating brand variability into classification of edible oils by Raman spectroscopy

食用油 拉曼光谱 化学计量学 化学 分析化学(期刊) 数学 模式识别(心理学) 材料科学 色谱法 食品科学 人工智能 计算机科学 物理 光学
作者
Francis Kwofie,Barry K. Lavine,J. M. Ottaway,Karl S. Booksh
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:34 (7) 被引量:10
标识
DOI:10.1002/cem.3173
摘要

Abstract Two‐hundred and fifteen Raman spectra of 15 edible oils or blends of edible oils from 53 samples spanning multiple brands purchased over 3 years were investigated using a genetic algorithm for spectral pattern recognition. Using a hierarchical approach to classification, the 15 edible oils could be divided into two groups based on their degree of unsaturation. While edible oils from any particular batch within a class are well clustered and can be differentiated from other varieties of edible oils that are also from a single source, incorporating uncontrolled variability from sources (by purchasing edible oils under different brand names) and seasons (by purchasing edible oils over a 3‐year period) presented a far more challenging classification problem for edible oils within the same group. The between‐source and yearly variability within one class of edible oils is often comparable to differences between the average spectra of the different varieties of edible oils, thereby preventing either a reliable classification of the edible oils or the detection of adulterants in an edible oil if a single model, spanning all sources and years of oils, is to be constructed. The novelty of this study arises from the incorporation of edible oils gathered systematically over the span of 3 years, introducing a heretofore unseen variance to the chemical compositions of the edible oils that are being classified. This is the first time that many different edible oils and commercially available brands thereof have been classified simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然老太完成签到,获得积分10
刚刚
刚刚
哟哟哟完成签到,获得积分10
1秒前
思源应助背后的机器猫采纳,获得10
1秒前
惠惠发布了新的文献求助10
1秒前
AFEUWOS01完成签到,获得积分20
2秒前
冷傲的樱桃完成签到,获得积分10
2秒前
fighting发布了新的文献求助10
2秒前
zxw发布了新的文献求助10
3秒前
赵赵赵完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
唐人雄完成签到,获得积分10
4秒前
xctdyl1992完成签到,获得积分20
4秒前
4秒前
丰知然应助周凡淇采纳,获得10
4秒前
丰知然应助周凡淇采纳,获得10
4秒前
科研小白花完成签到,获得积分20
5秒前
纯真忆安完成签到,获得积分20
5秒前
5秒前
长孙归尘发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
sweetbearm应助通~采纳,获得10
6秒前
6秒前
青木蓝发布了新的文献求助10
7秒前
7秒前
7秒前
李健的粉丝团团长应助yzz采纳,获得10
7秒前
7秒前
7秒前
7秒前
呆萌士晋发布了新的文献求助10
7秒前
luxxxiu发布了新的文献求助10
7秒前
可爱的函函应助正直亦旋采纳,获得10
8秒前
铜豌豆完成签到 ,获得积分10
8秒前
爆米花应助鳗鱼灵寒采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794