任务(项目管理)
管道(软件)
计算机科学
过程(计算)
结果(博弈论)
人工智能
连接(主束)
跟踪(教育)
机器学习
分辨率(逻辑)
多任务学习
人机交互
工程类
心理学
系统工程
程序设计语言
结构工程
数理经济学
数学
教育学
作者
Elena Kochkina,Maria Liakata,Arkaitz Zubiaga
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:99
标识
DOI:10.48550/arxiv.1806.03713
摘要
Automatic resolution of rumours is a challenging task that can be broken down into smaller components that make up a pipeline, including rumour detection, rumour tracking and stance classification, leading to the final outcome of determining the veracity of a rumour. In previous work, these steps in the process of rumour verification have been developed as separate components where the output of one feeds into the next. We propose a multi-task learning approach that allows joint training of the main and auxiliary tasks, improving the performance of rumour verification. We examine the connection between the dataset properties and the outcomes of the multi-task learning models used.
科研通智能强力驱动
Strongly Powered by AbleSci AI