生物
甲壳动物
代谢组学
小龙虾
转录组
动物
生态学
基因表达
生物化学
生物信息学
基因
作者
Claude Power,Simon G. Lamarre,Anne‐Marie Dion‐Côté
标识
DOI:10.1016/j.cbd.2023.101079
摘要
The molecular mechanisms underlying the stress response are poorly described in crustaceans. This includes the snow crab (Chionoecetes opilio), a commercially important stenotherm species distributed throughout the northern hemisphere. A better understanding of the stress response in C. opilio is desperately needed for commercial and conservation purposes. The purpose of this study was to investigate the transcriptional and metabolomic response of C. opilio exposed to stressors. Crabs were randomly assigned to 24 or 72 h treatment groups where they were exposed to conditions simulating live transport (handling and air exposure). A control group was kept in cold (2 °C) and well‑oxygenated saltwater. The hepatopancreas of the crabs was sampled to perform RNA-sequencing and high-performance chemical isotope labeling metabolomics. Differential gene expression analyses showed that classic crustaceans' stress markers, such as crustacean hyperglycemic hormones and heat shock proteins, were overexpressed in response to stressors. Tyrosine decarboxylase was also up-regulated in stressed crabs, suggesting an implication of the catecholamines tyramine and octopamine in the stress response. Deregulated metabolites revealed that low oxygen was an important trigger in the stress response as intermediate metabolites of the tricarboxylic acid cycle (TCA) accumulated. Lactate, which accumulated unevenly between crabs could potentially be used to predict mortality. This study provides new information on how stressors affect crustaceans and provides a basis for the development of stress markers in C. opilio.
科研通智能强力驱动
Strongly Powered by AbleSci AI