Sparse Convoluted Rank Regression in High Dimensions

数学 秩(图论) 回归 统计 回归分析 估计员 最小二乘函数近似 应用数学 算法 组合数学
作者
Le Zhou,Boxiang Wang,Hui Zou
标识
DOI:10.1080/01621459.2023.2202433
摘要

Wang et al. studied the high-dimensional sparse penalized rank regression and established its nice theoretical properties. Compared with the least squares, rank regression can have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency of 86.4%. However, the computation of penalized rank regression can be very challenging for high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view the rank regression loss as a nonsmooth empirical counterpart of a population level quantity, and a smooth empirical counterpart is derived by substituting a kernel density estimator for the true distribution in the expectation calculation. This view leads to the convoluted rank regression loss and consequently the sparse penalized convoluted rank regression (CRR) for high-dimensional data. We prove some interesting asymptotic properties of CRR. Under the same key assumptions for sparse rank regression, we establish the rate of convergence of the l1-penalized CRR for a tuning free penalization parameter and prove the strong oracle property of the folded concave penalized CRR. We further propose a high-dimensional Bayesian information criterion for selecting the penalization parameter in folded concave penalized CRR and prove its selection consistency. We derive an efficient algorithm for solving sparse convoluted rank regression that scales well with high dimensions. Numerical examples demonstrate the promising performance of the sparse convoluted rank regression over the sparse rank regression. Our theoretical and numerical results suggest that sparse convoluted rank regression enjoys the best of both sparse least squares regression and sparse rank regression. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
迷你的怀莲完成签到 ,获得积分10
2秒前
情怀应助云上人采纳,获得10
4秒前
5秒前
liudw完成签到,获得积分10
7秒前
7秒前
Siling完成签到 ,获得积分10
8秒前
9秒前
9秒前
xzc给xzc的求助进行了留言
10秒前
星辰大海应助俭朴的红牛采纳,获得10
10秒前
11秒前
工力所发布了新的文献求助30
14秒前
zzzzzzzzzzzzb发布了新的文献求助10
14秒前
delta发布了新的文献求助10
15秒前
酷波er应助朴实乐巧采纳,获得10
15秒前
shooin完成签到,获得积分10
17秒前
蔡小娜关注了科研通微信公众号
18秒前
zzzzzzzzzzzzb完成签到,获得积分10
19秒前
20秒前
xxxidgkris发布了新的文献求助30
22秒前
23秒前
天问完成签到 ,获得积分10
24秒前
24秒前
炼丹完成签到,获得积分10
24秒前
LX发布了新的文献求助10
25秒前
踏清秋完成签到,获得积分10
27秒前
云上人发布了新的文献求助10
30秒前
工力所完成签到,获得积分10
31秒前
xxxidgkris完成签到,获得积分10
33秒前
33秒前
33秒前
ding应助delta采纳,获得10
34秒前
传奇3应助XYZ采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023