Sparse Convoluted Rank Regression in High Dimensions

数学 秩(图论) 回归 统计 回归分析 估计员 最小二乘函数近似 应用数学 算法 组合数学
作者
Le Zhou,Boxiang Wang,Hui Zou
标识
DOI:10.1080/01621459.2023.2202433
摘要

Wang et al. studied the high-dimensional sparse penalized rank regression and established its nice theoretical properties. Compared with the least squares, rank regression can have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency of 86.4%. However, the computation of penalized rank regression can be very challenging for high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view the rank regression loss as a nonsmooth empirical counterpart of a population level quantity, and a smooth empirical counterpart is derived by substituting a kernel density estimator for the true distribution in the expectation calculation. This view leads to the convoluted rank regression loss and consequently the sparse penalized convoluted rank regression (CRR) for high-dimensional data. We prove some interesting asymptotic properties of CRR. Under the same key assumptions for sparse rank regression, we establish the rate of convergence of the l1-penalized CRR for a tuning free penalization parameter and prove the strong oracle property of the folded concave penalized CRR. We further propose a high-dimensional Bayesian information criterion for selecting the penalization parameter in folded concave penalized CRR and prove its selection consistency. We derive an efficient algorithm for solving sparse convoluted rank regression that scales well with high dimensions. Numerical examples demonstrate the promising performance of the sparse convoluted rank regression over the sparse rank regression. Our theoretical and numerical results suggest that sparse convoluted rank regression enjoys the best of both sparse least squares regression and sparse rank regression. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助飞稿采纳,获得10
刚刚
哈哈哈完成签到,获得积分10
1秒前
2秒前
香蕉觅云应助冷酷的松思采纳,获得10
2秒前
long发布了新的文献求助20
2秒前
Ciri完成签到,获得积分10
3秒前
天天快乐应助tyx采纳,获得10
3秒前
3秒前
4秒前
4秒前
chihuey完成签到,获得积分10
4秒前
5秒前
哈哈哈发布了新的文献求助10
5秒前
Tao发布了新的文献求助10
5秒前
心杨完成签到 ,获得积分10
7秒前
Gilmore完成签到,获得积分10
7秒前
鲸落发布了新的文献求助10
7秒前
热气球应助风趣翠霜采纳,获得20
7秒前
情怀应助包包琪采纳,获得30
8秒前
1234发布了新的文献求助10
8秒前
Elcric完成签到,获得积分20
9秒前
哩哩哩完成签到 ,获得积分10
9秒前
Mine发布了新的文献求助10
9秒前
颜靖仇发布了新的文献求助10
9秒前
10秒前
123发布了新的文献求助10
11秒前
虫贝完成签到,获得积分10
11秒前
周久发布了新的文献求助10
12秒前
现代的访曼应助哈哈哈采纳,获得20
12秒前
鲸落完成签到,获得积分10
14秒前
纯情的严青完成签到,获得积分10
14秒前
张献忠完成签到,获得积分20
15秒前
15秒前
跳跃仙人掌完成签到,获得积分0
16秒前
16秒前
8R60d8应助俏皮连虎采纳,获得30
17秒前
17秒前
八硝基立方烷完成签到,获得积分0
17秒前
Falcon完成签到 ,获得积分10
18秒前
tefuir0707完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089