已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Large Language Models in Traditional Chinese Medicine: A Scoping Review

标准化 中医药 数据提取 替代医学 医学 中西医结合 梅德林 传统医学 计算机科学 病理 政治学 法学 操作系统
作者
Yulan Ren,Xufei Luo,Li Wang,Haodong Li,Hairong Zhang,Zeming Li,Honghao Lai,Xuanlin Li,Long Ge,Janne Estill,Lu Zhang,Shu Yang,Yaolong Chen,Chengping Wen,Zhaoxiang Bian
出处
期刊:Journal of Evidence-based Medicine [Wiley]
标识
DOI:10.1111/jebm.12658
摘要

ABSTRACT Background The application of large language models (LLMs) in medicine has received increasing attention, showing significant potential in teaching, research, and clinical practice, especially in knowledge extraction, management, and understanding. However, the use of LLMs in Traditional Chinese Medicine (TCM) has not been thoroughly studied. This study aims to provide a comprehensive overview of the status and challenges of LLM applications in TCM. Methods A systematic search of five electronic databases and Google Scholar was conducted between November 2022 and April 2024, using the Arksey and O'Malley five‐stage framework to identify relevant studies. Data from eligible studies were comprehensively extracted and organized to describe LLM applications in TCM and assess their performance accuracy. Results A total of 29 studies were identified: 24 peer‐reviewed articles, 1 review, and 4 preprints. Two core application areas were found: the extraction, management, and understanding of TCM knowledge, and assisted diagnosis and treatment. LLMs developed specifically for TCM achieved 70% accuracy in the TCM Practitioner Exam, while general‐purpose Chinese LLMs achieved 60% accuracy. Common international LLMs did not pass the exam. Models like EpidemicCHAT and MedChatZH, trained on customized TCM corpora, outperformed general LLMs in TCM consultation. Conclusion Despite their potential, LLMs in TCM face challenges such as data quality and security issues, the specificity and complexity of TCM data, and the nonquantitative nature of TCM diagnosis and treatment. Future efforts should focus on interdisciplinary talent cultivation, enhanced data standardization and protection, and exploring LLM potential in multimodal interaction and intelligent diagnosis and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助myf采纳,获得30
1秒前
枫1538完成签到,获得积分10
1秒前
高高发布了新的文献求助10
4秒前
忧郁凝莲发布了新的文献求助10
5秒前
Feng5945发布了新的文献求助10
5秒前
云飞扬完成签到 ,获得积分10
5秒前
6秒前
7秒前
9秒前
耍酷依玉完成签到,获得积分20
10秒前
伊倾发布了新的文献求助10
11秒前
12秒前
苏苏苏完成签到,获得积分10
13秒前
耍酷依玉发布了新的文献求助30
13秒前
myf发布了新的文献求助30
14秒前
15秒前
jackie发布了新的文献求助20
19秒前
在水一方应助boom采纳,获得10
20秒前
萝卜完成签到 ,获得积分10
21秒前
才富郭完成签到 ,获得积分10
25秒前
所所应助悬壶济世之骨科采纳,获得10
26秒前
cctv18应助默默衣采纳,获得30
27秒前
27秒前
大个应助默默衣采纳,获得10
27秒前
科研通AI2S应助myf采纳,获得10
28秒前
28秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
31秒前
xiaomeng完成签到 ,获得积分10
31秒前
boom发布了新的文献求助10
34秒前
皮皮球完成签到 ,获得积分10
36秒前
bwbw完成签到 ,获得积分10
37秒前
今后应助耍酷依玉采纳,获得10
37秒前
深情安青应助咚咚采纳,获得10
39秒前
40秒前
Zn0103发布了新的文献求助10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244525
求助须知:如何正确求助?哪些是违规求助? 2888226
关于积分的说明 8251914
捐赠科研通 2556650
什么是DOI,文献DOI怎么找? 1385110
科研通“疑难数据库(出版商)”最低求助积分说明 650009
邀请新用户注册赠送积分活动 626177