丹参
生物
蛋白酶体
生物合成
生物化学
泛素
转录因子
细胞生物学
泛素连接酶
基因
医学
替代医学
病理
中医药
作者
Qi Li,Xiujuan Wang,Jie Wang,Yan Su,Yuanyi Guo,Jie Yang,Jingying Liu,Zheyong Xue,Juane Dong,Pengda Ma
摘要
Abstract The ubiquitin-26S proteasome system (UPS) is associated with protein stability and activity, regulation of hormone signaling, and the production of secondary metabolites in plants. Though the mechanism of action of SmMYB36 on the tanshinone and phenolic acid biosynthesis is well understood, its regulation through post-translational modifications is unclear. A constitutive photomorphogenesis 9 (COP9) signalosome subunit 5 (SmCSN5), which interacted with SmMYB36 and inhibited its ubiquitination-based degradation, was identified in S. miltiorrhiza. SmCSN5 promoted tanshinone biosynthesis but inhibited phenolic acid biosynthesis in the hairy roots of S. miltiorrhiza. SmMYB36 also activated the transcription of the target genes: SmDXS2 and SmCPS1 but repressed that of SmRAS in a SmCSN5-dependent manner. SmCSN5 acts as a positive regulator in MeJA-induced biosynthesis of tanshinones and phenolic acids. Specifically, SmCSN5 alone, when expressed transiently in tobacco and rice protoplasts, was localized to the cytoplasm, cell membrane, and nucleus, whereas when coexpressed with SmMYB36, it was detected only in the nucleus. Additionally, the degradation of SmMYB361-153 by ubiquitination was lowered after truncation of the self-activating structural domain of SmMYB36154-160. Collectively, these results suggest that SmCSN5 affected the transcriptional activation of SmMYB36 and stabilized SmMYB36, providing insights into the SmMYB36-based regulation of the accumulation of tanshinone and phenolic acid at the transcriptional and post-translational levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI