Few-Shot Hyperspectral Image Classification With Self-Supervised Learning

计算机科学 人工智能 判别式 模式识别(心理学) 高光谱成像 特征提取 班级(哲学) 上下文图像分类 计算机视觉 图像(数学)
作者
Zhaokui Li,Hui Guo,Yushi Chen,Cuiwei Liu,Qian Du,Zhuoqun Fang,Yan Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:23
标识
DOI:10.1109/tgrs.2023.3298851
摘要

Recently, few-shot learning (FSL) has been introduced for hyperspectral image (HSI) classification with few labeled samples. However, existing FSL-based HSI classification methods mainly focus on the meta-knowledge transfer between HSIs. Compared with HSIs, natural images have sufficient annotated data. To utilize natural images (base class data) to achieve accurate classification of HSIs (novel class data), we propose a novel few-shot classification framework with SSL (FSCF-SSL) for HSIs in this article. The orientation of objects in natural images is relatively unitary, whereas the objects of image patches for each pixel in HSIs have diverse orientations in the spatial domain. To make better use of base classes, we design an SSL with geometric transformations (SSLGTs), which sets rotation labels as supervision to extract low-level features that can better represent diverse orientations, and then conduct SSLGT and FSL on base classes to learn transferable spatial meta-knowledge. Next, a spectral-spatial feature extraction network is carefully designed to better utilize the spatial and spectral information of HSIs, where the weights of the first seven layers of the spatial part are initialized by the weights of the corresponding layers trained on base classes. Finally, to fully explore the few annotated data from novel classes, we design an SSL with contrastive learning (SSLCL) that can mine the category-invariant features contained in the novel class data itself, and then perform SSLCL and FSL on novel classes to learn more discriminative individual knowledge. Experimental results on four HSI datasets show that FSCF-SSL offers a significant improvement over state-of-the-art methods. The code is available at https://github.com/Li-ZK/FSCF-SSL-2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anna1992发布了新的文献求助10
刚刚
YY完成签到,获得积分10
刚刚
符宇新发布了新的文献求助10
刚刚
iNk应助kk采纳,获得10
1秒前
小马甲应助有机分子笼采纳,获得10
1秒前
1秒前
1秒前
张文静发布了新的文献求助30
1秒前
沉默的小天鹅应助xiaose采纳,获得10
2秒前
章宇完成签到,获得积分10
2秒前
充电宝应助123采纳,获得10
3秒前
想喝冰美完成签到,获得积分10
3秒前
bkagyin应助小海采纳,获得10
3秒前
帅气凝云完成签到,获得积分10
3秒前
LUKW给嘟嘟喂嘟嘟的求助进行了留言
3秒前
3秒前
清新的寄风完成签到 ,获得积分10
4秒前
难过的一一完成签到,获得积分10
4秒前
Jasper应助Ancient采纳,获得10
4秒前
孙刚发布了新的文献求助10
4秒前
英勇皮卡丘完成签到,获得积分10
5秒前
Deny发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
xinanan完成签到,获得积分10
5秒前
荔枝多酚完成签到,获得积分10
6秒前
Coraline发布了新的文献求助10
6秒前
坦率的匪举报金闪闪求助涉嫌违规
6秒前
GGGGGG果果发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
64658应助Ruby采纳,获得10
7秒前
kiki完成签到 ,获得积分10
8秒前
小二郎应助fafamimireredo采纳,获得10
8秒前
9秒前
小胖熊完成签到,获得积分10
9秒前
9秒前
bgt发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650