阳极
阴极
材料科学
电流密度
锂(药物)
枝晶(数学)
化学工程
金属
电池(电)
容量损失
金属有机骨架
沉积(地质)
氧化物
电极
金属锂
纳米技术
化学
冶金
热力学
沉积物
物理化学
数学
内分泌学
工程类
生物
古生物学
功率(物理)
几何学
吸附
量子力学
医学
物理
作者
Gangqiang Peng,Qianfeng Zheng,Geng Luo,Dawei Zheng,Shien‐Ping Feng,Ubaid Khan,Abdul Rehman Akbar,Haimei Luo,Fude Liu
出处
期刊:Small
[Wiley]
日期:2023-07-12
卷期号:19 (47)
被引量:10
标识
DOI:10.1002/smll.202303787
摘要
Using three-dimensional current collectors (3DCC) as frameworks for lithium metal anodes (LMAs) is a promising approach to inhibit dendrite growth. However, the intrinsically accumulated current density on the top surface and limited Li-ion transfer in the interior of 3DCC still lead to the formation of lithium dendrites, which can pose safety risks. In this study, it reports that gradient lithiophilic structures can induce uniform lithium deposition within the interior of the 3DCC, greatly suppressing dendrite formation, as confirmed by COMSOL simulations and experimental results. With this concept, a gradient-structured zinc oxide-loaded copper foam (GSZO-CF) is synthesized via an easy solution-combustion method at low cost. The resulting Li@GSZO-CF symmetric cells demonstrate stable cycling performance for over 800 cycles, with an ultra-deep capacity of 10 mAh cm-2 even under an ultra-high current density of 50 mA cm-2 , the top results reported in the literature. Moreover, when combined with a LiFePO4 (LFP) cathode under a low negative/positive (N/P) capacity ratio of 2.9, the Li@GSZO-CF||LFP full cells exhibit stable performance for 200 cycles, with a discharge capacity of 130 mAh g-1 and retention of 85.5% at a charging/discharging rate of 1C. These findings suggest a promising strategy for the development of new-generation LMAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI