Active learning with deep autoencoders for seismic facies interpretation

计算机科学 人工智能 口译(哲学) 机器学习 排名(信息检索) 注释 集合(抽象数据类型) 主动学习(机器学习) 过程(计算) 标记数据 翻译 数据集 深度学习 培训(气象学) 自然语言处理 物理 气象学 程序设计语言 操作系统
作者
Ahmad Mustafa,Ghassan AlRegib
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (4): IM77-IM86 被引量:6
标识
DOI:10.1190/geo2022-0353.1
摘要

Machine-learning (ML)-assisted seismic interpretation tasks require large quantities of labeled data annotated by expert interpreters, which is a costly and time-consuming process. Whereas existing works to minimize dependence on labeled data assume the data annotation process to already be completed, active learning — a field of ML — works by selecting the most important training samples for the interpreter to annotate in real time simultaneously with the training of the interpretation model itself, resulting in high levels of performance with fewer labeled data samples than otherwise possible. Whereas there exists significant literature on active learning for classification tasks with respect to natural images, there exists very little to no work for dense prediction tasks in geophysics such as interpretation. We have developed a unique and first-of-its-kind active learning framework for seismic facies interpretation using the manifold learning properties of deep autoencoders. By jointly learning representations for supervised and unsupervised tasks and then ranking unlabeled samples by their nearness to the data manifold, we can identify the most relevant training samples to be labeled by the interpreter in each training round. On the popular F3 data set, we obtain close to a 10% point difference in terms of the interpretation accuracy between the proposed method and the baseline with only three fully annotated seismic sections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyf完成签到,获得积分10
1秒前
汉堡包应助jacs111采纳,获得10
1秒前
2秒前
珂伟完成签到,获得积分10
3秒前
张凤发布了新的文献求助10
3秒前
5秒前
5秒前
李健应助drew采纳,获得10
5秒前
清秀服饰完成签到 ,获得积分10
6秒前
CR7完成签到,获得积分10
7秒前
深情安青应助11采纳,获得10
9秒前
脑洞疼应助yaya采纳,获得10
9秒前
超帅的樱发布了新的文献求助10
10秒前
乐南完成签到,获得积分10
13秒前
小富婆完成签到,获得积分10
13秒前
加油发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
JPH1990应助Ambition采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
16秒前
916应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
科研通AI5应助大胆吐司采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
wkjfh应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
wyw完成签到,获得积分10
18秒前
星辰大海应助科研通管家采纳,获得30
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427