Dose reduction and image enhancement in micro‐CT using deep learning

图像质量 卷积神经网络 人工智能 深度学习 降噪 计算机科学 成像体模 医学影像学 噪音(视频) 迭代重建 图像噪声 临床前影像学 图像复原 还原(数学) 图像处理 模式识别(心理学) 计算机视觉 医学 核医学 图像(数学) 体内 数学 生物技术 生物 几何学
作者
Florence M. Muller,Jens Maebe,Christian Vanhove,Stefaan Vandenberghe
出处
期刊:Medical Physics [Wiley]
卷期号:50 (9): 5643-5656 被引量:5
标识
DOI:10.1002/mp.16385
摘要

Abstract Background In preclinical settings, micro‐computed tomography (CT) provides a powerful tool to acquire high resolution anatomical images of rodents and offers the advantage to in vivo non‐invasively assess disease progression and therapy efficacy. Much higher resolutions are needed to achieve scale‐equivalent discriminatory capabilities in rodents as those in humans. High resolution imaging however comes at the expense of increased scan times and higher doses. Specifically, with preclinical longitudinal imaging, there are concerns that dose accumulation may affect experimental outcomes of animal models. Purpose Dose reduction efforts under the ALARA (as low as reasonably achievable) principles are thus a key point of attention. However, low dose CT acquisitions inherently induce higher noise levels which deteriorate image quality and negatively impact diagnostic performance. Many denoising techniques already exist, and deep learning (DL) has become increasingly popular for image denoising, but research has mostly focused on clinical CT with limited studies conducted on preclinical CT imaging. We investigate the potential of convolutional neural networks (CNN) for restoring high quality micro‐CT images from low dose (noisy) images. The novelty of the CNN denoising frameworks presented in this work consists of utilizing image pairs with realistic CT noise present in the input as well as the target image used for the model training; a noisier image acquired with a low dose protocol is matched to a less noisy image acquired with a higher dose scan of the same mouse. Methods Low and high dose ex vivo micro‐CT scans of 38 mice were acquired. Two CNN models, based on a 2D and 3D four‐layer U‐Net, were trained with mean absolute error (30 training, 4 validation and 4 test sets). To assess denoising performance, ex vivo mice and phantom data were used. Both CNN approaches were compared to existing methods, like spatial filtering (Gaussian, Median, Wiener) and iterative total variation image reconstruction algorithm. Image quality metrics were derived from the phantom images. A first observer study ( n = 23) was set‐up to rank overall quality of differently denoised images. A second observer study ( n = 18) estimated the dose reduction factor of the investigated 2D CNN method. Results Visual and quantitative results show that both CNN algorithms exhibit superior performance in terms of noise suppression, structural preservation and contrast enhancement over comparator methods. The quality scoring by 23 medical imaging experts also indicates that the investigated 2D CNN approach is consistently evaluated as the best performing denoising method. Results from the second observer study and quantitative measurements suggest that CNN‐based denoising could offer a 2–4× dose reduction, with an estimated dose reduction factor of about 3.2 for the considered 2D network. Conclusions Our results demonstrate the potential of DL in micro‐CT for higher quality imaging at low dose acquisition settings. In the context of preclinical research, this offers promising future prospects for managing the cumulative severity effects of radiation in longitudinal studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
上官若男应助咕咕鸡采纳,获得10
1秒前
cc完成签到,获得积分20
1秒前
1秒前
白小施发布了新的文献求助10
2秒前
2秒前
星星完成签到,获得积分10
3秒前
邱寻绿发布了新的文献求助10
3秒前
3秒前
4秒前
hyx完成签到,获得积分10
4秒前
4秒前
thchiang完成签到 ,获得积分10
4秒前
Christine发布了新的文献求助10
5秒前
5秒前
5秒前
繁星发布了新的文献求助10
6秒前
shuangcheng完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助GFY采纳,获得10
6秒前
6秒前
nicemice完成签到,获得积分20
7秒前
夏天无发布了新的文献求助10
8秒前
8秒前
丘比特应助syccc采纳,获得10
8秒前
8秒前
9秒前
自然篮球发布了新的文献求助10
9秒前
9秒前
9秒前
小马甲应助ssskong采纳,获得10
10秒前
10秒前
小飞完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助hyx采纳,获得10
11秒前
妙竹发布了新的文献求助10
11秒前
无花果应助狗大王采纳,获得10
12秒前
咿呀发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251