计算机科学
人工智能
分类器(UML)
注释
情报检索
作者
Guangyao Lu,Yuling Liu,Jie Wang,Hongping Wu
标识
DOI:10.1016/j.ipm.2023.103320
摘要
We propose a CNN-BiLSTM-Attention classifier to classify online short messages in Chinese posted by users on government web portals, so that a message can be directed to one or more government offices. Our model leverages every bit of information to carry out multi-label classification, to make use of different hierarchical text features and the labels information. In particular, our designed method extracts label meaning, the CNN layer extracts local semantic features of the texts, the BiLSTM layer fuses the contextual features of the texts and the local semantic features, and the attention layer selects the most relevant features for each label. We evaluate our model on two public large corpuses, and our high-quality handcraft e-government multi-label dataset, which is constructed by the text annotation tool doccano and consists of 29920 data points. Experimental results show that our proposed method is effective under common multi-label evaluation metrics, achieving micro-f1 of 77.22%, 84.42%, 87.52%, and marco-f1 of 77.68%, 73.37%, 83.57% on these three datasets respectively, confirming that our classifier is robust. We conduct ablation study to evaluate our label embedding method and attention mechanism. Moreover, case study on our handcraft e-government multi-label dataset verifies that our model integrates all types of semantic information of short messages based on different labels to achieve text classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI