CNN-BiLSTM-Attention: A multi-label neural classifier for short texts with a small set of labels

计算机科学 人工智能 分类器(UML) 注释 情报检索
作者
Guangyao Lu,Yuling Liu,Jie Wang,Hongping Wu
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (3): 103320-103320 被引量:47
标识
DOI:10.1016/j.ipm.2023.103320
摘要

We propose a CNN-BiLSTM-Attention classifier to classify online short messages in Chinese posted by users on government web portals, so that a message can be directed to one or more government offices. Our model leverages every bit of information to carry out multi-label classification, to make use of different hierarchical text features and the labels information. In particular, our designed method extracts label meaning, the CNN layer extracts local semantic features of the texts, the BiLSTM layer fuses the contextual features of the texts and the local semantic features, and the attention layer selects the most relevant features for each label. We evaluate our model on two public large corpuses, and our high-quality handcraft e-government multi-label dataset, which is constructed by the text annotation tool doccano and consists of 29920 data points. Experimental results show that our proposed method is effective under common multi-label evaluation metrics, achieving micro-f1 of 77.22%, 84.42%, 87.52%, and marco-f1 of 77.68%, 73.37%, 83.57% on these three datasets respectively, confirming that our classifier is robust. We conduct ablation study to evaluate our label embedding method and attention mechanism. Moreover, case study on our handcraft e-government multi-label dataset verifies that our model integrates all types of semantic information of short messages based on different labels to achieve text classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DARKNESS完成签到,获得积分10
1秒前
田浩完成签到,获得积分10
2秒前
3秒前
ao123发布了新的文献求助30
3秒前
liao完成签到 ,获得积分10
4秒前
77发布了新的文献求助10
4秒前
4秒前
ZR666888完成签到,获得积分10
4秒前
坦率抽屉发布了新的文献求助10
6秒前
6秒前
韩恩轩发布了新的文献求助10
8秒前
结实的蘑菇完成签到 ,获得积分10
8秒前
8秒前
萧寒发布了新的文献求助10
11秒前
Verity应助张zhang采纳,获得10
11秒前
12秒前
13秒前
14秒前
16秒前
fanfan完成签到 ,获得积分10
16秒前
我是老大应助一蓑烟雨1122采纳,获得10
18秒前
wk发布了新的文献求助10
19秒前
阳光发布了新的文献求助10
20秒前
白子双发布了新的文献求助10
21秒前
21秒前
研友_VZG7GZ应助极电采纳,获得10
22秒前
23秒前
28秒前
29秒前
Mia233完成签到 ,获得积分10
29秒前
李健应助科研通管家采纳,获得30
29秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
shhoing应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
ding应助科研通管家采纳,获得10
30秒前
戴亮应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
yyzhou应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915