GiT: Graph Interactive Transformer for Vehicle Re-Identification

判别式 变压器 计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学 工程类 电压 电气工程
作者
Fei Shen,Yi Xie,Jianqing Zhu,Xiaobin Zhu,Huanqiang Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1039-1051 被引量:83
标识
DOI:10.1109/tip.2023.3238642
摘要

Transformers are more and more popular in computer vision, which treat an image as a sequence of patches and learn robust global features from the sequence. However, pure transformers are not entirely suitable for vehicle re-identification because vehicle re-identification requires both robust global features and discriminative local features. For that, a graph interactive transformer (GiT) is proposed in this paper. In the macro view, a list of GiT blocks are stacked to build a vehicle re-identification model, in where graphs are to extract discriminative local features within patches and transformers are to extract robust global features among patches. In the micro view, graphs and transformers are in an interactive status, bringing effective cooperation between local and global features. Specifically, one current graph is embedded after the former level's graph and transformer, while the current transform is embedded after the current graph and the former level's transformer. In addition to the interaction between graphs and transforms, the graph is a newly-designed local correction graph, which learns discriminative local features within a patch by exploring nodes' relationships. Extensive experiments on three large-scale vehicle re-identification datasets demonstrate that our GiT method is superior to state-of-the-art vehicle re-identification approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你是我的唯一完成签到 ,获得积分10
1秒前
2秒前
ctc完成签到,获得积分10
4秒前
rainbow完成签到,获得积分10
5秒前
张112233发布了新的文献求助10
5秒前
bkagyin应助ctc采纳,获得10
8秒前
10秒前
CipherSage应助Chocolate采纳,获得10
11秒前
香蕉觅云应助cy0824采纳,获得10
13秒前
balancesy完成签到,获得积分10
15秒前
酷波er应助张津浩采纳,获得10
17秒前
铁锤完成签到 ,获得积分10
17秒前
18秒前
lili完成签到 ,获得积分10
22秒前
22秒前
22秒前
23秒前
调研昵称发布了新的文献求助10
23秒前
zhaolei完成签到 ,获得积分10
24秒前
小马甲应助大力沛萍采纳,获得10
25秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
NexusExplorer应助科研通管家采纳,获得30
26秒前
调研昵称发布了新的文献求助10
26秒前
辰辰元发布了新的文献求助10
27秒前
田様应助伤逝1990采纳,获得10
28秒前
勤奋天德发布了新的文献求助10
28秒前
小程别放弃完成签到,获得积分10
31秒前
31秒前
34秒前
34秒前
辰辰元完成签到,获得积分10
35秒前
35秒前
36秒前
37秒前
00发布了新的文献求助10
39秒前
40秒前
张津浩发布了新的文献求助10
41秒前
轻松海秋完成签到,获得积分10
41秒前
大力沛萍发布了新的文献求助10
41秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376616
求助须知:如何正确求助?哪些是违规求助? 2992527
关于积分的说明 8751545
捐赠科研通 2676913
什么是DOI,文献DOI怎么找? 1466340
科研通“疑难数据库(出版商)”最低求助积分说明 678270
邀请新用户注册赠送积分活动 669874