Review of calculation of conditional power, predictive power and probability of success in clinical trials with continuous, binary and time-to-event endpoints

频数推理 事件(粒子物理) 贝叶斯概率 条件概率分布 预测能力 计量经济学 条件概率 统计 临时的 计算机科学 后验概率 概率分布 数学 贝叶斯推理 物理 哲学 认识论 历史 考古 量子力学
作者
Madan G. Kundu,Sandipan Samanta,Shoubhik Mondal
出处
期刊:Health Services and Outcomes Research Methodology [Springer Science+Business Media]
卷期号:24 (1): 14-45 被引量:2
标识
DOI:10.1007/s10742-023-00302-5
摘要

Determination of posterior probability for go-no-go decision and predictive power are becoming increasingly common for resource optimization in clinical investigation. There are vast published literature on these topics; however, the terminologies are not consistently used across the literature. Further, there is a lack of consolidated presentation of various concepts of the probability of success. We attempted to fill this gap. This paper first provides a detailed derivation of these probability of success measures under the frequentist and Bayesian paradigms in a general setting. Subsequently, we have presented the analytical formula for these probability of success measures for continuous, binary, and time-to-event endpoints separately. This paper can be used as a single point reference to determine the following measures: (a) the conditional power (CP) based on interim results, (b) the predictive power of success (PPoS) based on interim results with or without prior distribution, and (d) the probability of success (PoS) for a prospective trial at the design stage. We have discussed both clinical success and trial success. This paper's discussion is mostly based on the normal approximation for prior distribution and the estimate of the parameter of interest. Besides, predictive power using the beta prior for the binomial case is also presented. Some examples are given for illustration. R functions to calculate CP and PPoS are available through the LongCART package. An R shiny app is also available at https://ppos.herokuapp.com/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助LinHan采纳,获得10
刚刚
东方发布了新的文献求助10
刚刚
1秒前
晓兴兴发布了新的文献求助10
2秒前
爱吃辣条的彪哥完成签到,获得积分10
2秒前
3秒前
月亮不知道完成签到,获得积分10
3秒前
华仔应助soda采纳,获得10
4秒前
4秒前
酷酷依秋完成签到,获得积分10
4秒前
ChloeYee完成签到 ,获得积分10
4秒前
枫叶应助美满艳采纳,获得30
5秒前
6秒前
9秒前
积木完成签到,获得积分10
9秒前
北城发布了新的文献求助10
11秒前
yyjdtc发布了新的文献求助10
11秒前
13秒前
斯文败类应助俏皮的龙猫采纳,获得10
13秒前
xhh完成签到,获得积分10
13秒前
YCPing发布了新的文献求助10
14秒前
zho发布了新的文献求助10
14秒前
李健的小迷弟应助domingo采纳,获得10
15秒前
15秒前
小萝莉完成签到,获得积分10
15秒前
往事无痕完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
我是老大应助fcyyc采纳,获得10
17秒前
晓兴兴完成签到,获得积分10
17秒前
乙醇完成签到,获得积分10
17秒前
18秒前
我不看月亮完成签到,获得积分10
18秒前
18秒前
18秒前
惊天大幂幂完成签到,获得积分10
19秒前
ChloeYee关注了科研通微信公众号
20秒前
慎独发布了新的文献求助10
20秒前
任伟超发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668189
求助须知:如何正确求助?哪些是违规求助? 3226562
关于积分的说明 9770261
捐赠科研通 2936503
什么是DOI,文献DOI怎么找? 1608620
邀请新用户注册赠送积分活动 759734
科研通“疑难数据库(出版商)”最低求助积分说明 735521