平滑度
理论(学习稳定性)
计算机科学
转化(遗传学)
应用数学
财产(哲学)
匹配(统计)
班级(哲学)
功能(生物学)
集合(抽象数据类型)
可靠性(半导体)
基质(化学分析)
数据集
算法
数学
数学优化
统计
人工智能
数学分析
机器学习
物理
量子力学
哲学
复合材料
功率(物理)
生物化学
认识论
化学
基因
材料科学
程序设计语言
生物
进化生物学
作者
Jing He,Shuhua Mao,Yong Kang
标识
DOI:10.1016/j.matcom.2023.02.008
摘要
Compared with the traditional first-order accumulation, fractional accumulation is a more efficient data transformation technique, whose order can be determined by the original sequence thus the smoothness and concavity of the data can be effectively improved, but this data-driven property affects the reliability and stability of the prediction while bringing high fitting accuracy. At the same time, the class ratio of the original data and the restore error of the grey model can reflect the degree of matching between the data and the model. Therefore, we summarize a set of methods to study these two perspectives by means of matrix decomposition, function analysis and numerical simulation, and then introduce the augmented fractional accumulation grey model with order optimization constraints. Through empirical test and case analysis, the established model whose modeling process is more rigorous has greater prediction effect and higher modeling efficiency, and can be extended to different fractional accumulated generating operators.
科研通智能强力驱动
Strongly Powered by AbleSci AI