Structure-independent machine learning predictions of the CDK12 interactome.

相互作用体 人工智能 计算机科学 计算生物学 机器学习 生物 遗传学 基因
作者
Aleksandra Karolak,Konstancja Urbaniak,Andrii Monastyrskyi,Derek R. Duckett,Sergio Branciamore,Paul A. Stewart
出处
期刊:Biophysical Journal [Elsevier BV]
标识
DOI:10.1016/j.bpj.2024.05.017
摘要

Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision medicine approaches for CDK12-associated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的秋荷完成签到 ,获得积分10
1秒前
谷曼婷发布了新的文献求助10
2秒前
隐形的傲易完成签到 ,获得积分10
3秒前
4秒前
疾风知劲草完成签到,获得积分10
4秒前
5秒前
汉堡包应助whale采纳,获得10
8秒前
CodeCraft应助依米zhang采纳,获得10
9秒前
无情修杰完成签到 ,获得积分10
9秒前
文静的牛排完成签到,获得积分10
10秒前
10秒前
顺心的千萍完成签到,获得积分10
11秒前
无花果应助聪慧的凝海采纳,获得10
12秒前
2316690509完成签到 ,获得积分10
12秒前
12秒前
20年单身狗完成签到,获得积分10
14秒前
陈诗羽完成签到,获得积分10
14秒前
cz发布了新的文献求助10
15秒前
皮卡丘比特应助lalala采纳,获得20
15秒前
爱听歌从蓉关注了科研通微信公众号
16秒前
香蕉觅云应助zh采纳,获得10
16秒前
17秒前
金金金完成签到,获得积分10
18秒前
19秒前
LONG发布了新的文献求助10
21秒前
红烧肉耶发布了新的文献求助10
22秒前
kirazou完成签到,获得积分10
22秒前
lwj完成签到,获得积分10
23秒前
28秒前
共享精神应助自觉的小凝采纳,获得10
32秒前
JamesPei应助琪求好运采纳,获得10
32秒前
33秒前
33秒前
33秒前
guard发布了新的文献求助10
33秒前
Sweety-完成签到 ,获得积分10
34秒前
34秒前
达拉崩吧完成签到,获得积分10
35秒前
童万明完成签到,获得积分20
36秒前
没烦恼完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511