亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structure-independent machine learning predictions of the CDK12 interactome.

相互作用体 人工智能 计算机科学 计算生物学 机器学习 生物 遗传学 基因
作者
Aleksandra Karolak,Konstancja Urbaniak,Andrii Monastyrskyi,Derek R. Duckett,Sergio Branciamore,Paul A. Stewart
出处
期刊:Biophysical Journal [Elsevier]
标识
DOI:10.1016/j.bpj.2024.05.017
摘要

Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision medicine approaches for CDK12-associated diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
tamo完成签到,获得积分10
10秒前
12秒前
13秒前
15秒前
潮鸣完成签到 ,获得积分10
16秒前
NiceSunnyDay完成签到 ,获得积分10
18秒前
哈哈完成签到,获得积分10
19秒前
wzccc发布了新的文献求助10
20秒前
22秒前
3sigma发布了新的文献求助10
27秒前
28秒前
29秒前
香樟沐雪发布了新的文献求助10
34秒前
脑洞疼应助3sigma采纳,获得10
36秒前
昏睡的芒果完成签到,获得积分10
37秒前
潇洒莞完成签到 ,获得积分10
37秒前
38秒前
传奇3应助疯狂的凝云采纳,获得10
41秒前
深情安青应助香樟沐雪采纳,获得10
45秒前
大模型应助saywhy采纳,获得10
47秒前
3sigma完成签到,获得积分10
48秒前
浮游应助科研通管家采纳,获得10
49秒前
吴彦祖应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
充电宝应助科研通管家采纳,获得10
49秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
吴彦祖应助科研通管家采纳,获得10
49秒前
59秒前
jjyy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
一个冷漠无情的人完成签到,获得积分10
1分钟前
唠叨的妙梦完成签到,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
leec完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297