亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structure-independent machine learning predictions of the CDK12 interactome.

相互作用体 人工智能 计算机科学 计算生物学 机器学习 生物 遗传学 基因
作者
Aleksandra Karolak,Konstancja Urbaniak,Andrii Monastyrskyi,Derek R. Duckett,Sergio Branciamore,Paul A. Stewart
出处
期刊:Biophysical Journal [Elsevier]
标识
DOI:10.1016/j.bpj.2024.05.017
摘要

Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision medicine approaches for CDK12-associated diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moo5_zzZ发布了新的文献求助30
2秒前
PKL完成签到,获得积分10
9秒前
11秒前
11秒前
CipherSage应助Moo5_zzZ采纳,获得30
14秒前
李健完成签到,获得积分10
16秒前
16秒前
汉堡包应助凉凉采纳,获得10
18秒前
shhoing应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
shhoing应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
19秒前
22秒前
24秒前
sparkle完成签到,获得积分10
25秒前
七慕凉应助Emma采纳,获得10
30秒前
36秒前
37秒前
42秒前
42秒前
44秒前
NexusExplorer应助Emma采纳,获得10
45秒前
曾经凌萱发布了新的文献求助10
46秒前
我要看文献完成签到 ,获得积分10
47秒前
48秒前
49秒前
槐序深巷完成签到 ,获得积分10
49秒前
小宋爱科研完成签到 ,获得积分10
51秒前
52秒前
浮游应助Emma采纳,获得10
1分钟前
xin发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
1分钟前
元气小Liu完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364