The relationship between body roundness index and depression: A cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) 2011–2018

全国健康与营养检查调查 体质指数 体型指数 横断面研究 萧条(经济学) 医学 心理学 环境卫生 病理 人口 脂肪团 肥胖的分类 经济 宏观经济学
作者
Lu Zhang,Jiahui Yin,Haiyang Sun,Wenliang Dong,Zihui Liu,Jiguo Yang,Yuanxiang Liu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:361: 17-23 被引量:11
标识
DOI:10.1016/j.jad.2024.05.153
摘要

Depression is linked to obesity. The body roundness index (BRI) provides a more accurate assessment of body and visceral fat levels than the body mass index or waist circumference. However, the association between BRI and depression is unclear. Therefore, we investigated this relationship using the National Health and Nutrition Examination Survey (NHANES) database. In this population-based cross-sectional study, data from 18,654 adults aged ≥20 years from the NHANES 2011–2018 were analyzed. Covariates, including age, gender, race/ethnicity, education level, marital status, poverty-income ratio, alcohol status, smoking status, hypertension, diabetes mellitus, cardiovascular disease, energy intake, physical activity, total cholesterol, and triglycerides were adjusted in multivariable logistic regression models. In addition, smooth curve fitting, subgroup analysis, and interaction testing were conducted. After adjusting for covariates, BRI was positively correlated with depression. For each one-unit increase in BRI, the prevalence of depression increased by 8 % (odds ratio = 1.08, 95 % confidence interval = 1.05–1.10, P < 0.001). As this was a cross-sectional study, we could not determine a causal relationship between BRI and depression. Patients with depression in this study were not clinically diagnosed with major depressive disorder. BRI levels were positively related to an increased prevalence of depression in American adults. BRI may serve as a simple anthropometric index to predict depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
光亮芷天完成签到,获得积分10
刚刚
刚刚
1秒前
粗犷的问夏完成签到,获得积分10
2秒前
知行合一完成签到 ,获得积分10
3秒前
3秒前
4秒前
李爱国应助晨曦采纳,获得10
5秒前
0128lun发布了新的文献求助10
5秒前
phd发布了新的文献求助10
6秒前
君无名完成签到 ,获得积分10
6秒前
经年发布了新的文献求助10
6秒前
QXR完成签到,获得积分10
7秒前
豆dou完成签到,获得积分10
7秒前
Dddd发布了新的文献求助10
7秒前
HCl完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
Hollen完成签到 ,获得积分10
11秒前
慕青应助学术蠕虫采纳,获得10
12秒前
12秒前
叶子发布了新的文献求助10
13秒前
orangel完成签到,获得积分10
14秒前
半壶月色半边天完成签到 ,获得积分10
15秒前
tmpstlml发布了新的文献求助10
15秒前
16秒前
16秒前
不安饼干完成签到 ,获得积分10
18秒前
活泼的飞鸟完成签到,获得积分10
18秒前
19秒前
xuyun发布了新的文献求助10
19秒前
19秒前
zzcres完成签到,获得积分10
21秒前
eeeee完成签到 ,获得积分10
21秒前
乐观德地完成签到,获得积分10
22秒前
大个应助yf_zhu采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808