Recent advances in algal bloom detection and prediction technology using machine learning

水华 计算机科学 领域(数学) 布鲁姆 水质 水生生态系统 人类健康 环境科学 人工智能 机器学习 生态学 浮游植物 生物 营养物 医学 数学 环境卫生 纯数学
作者
Jungsu Park,Keval K. Patel,Woo Hyoung Lee
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:938: 173546-173546 被引量:12
标识
DOI:10.1016/j.scitotenv.2024.173546
摘要

Harmful algal blooms (HAB) including red tides and cyanobacteria are a significant environmental issue that can have harmful effects on aquatic ecosystems and human health. Traditional methods of detecting and managing algal blooms have been limited by their reliance on manual observation and analysis, which can be time-consuming and costly. Recent advances in machine learning (ML) technology have shown promise in improving the accuracy and efficiency of algal bloom detection and prediction. This paper provides an overview of the latest developments in using ML for algal bloom detection and prediction using various water quality parameters and environmental factors. First, we introduced ML for algal bloom prediction using regression and classification models. Then we explored image-based ML for algae detection by utilizing satellite images, surveillance cameras, and microscopic images. This study also highlights several real-world examples of successful implementation of ML for algal bloom detection and prediction. These examples show how ML can enhance the accuracy and efficiency of detecting and predicting algal blooms, contributing to the protection of aquatic ecosystems and human health. The study also outlines recent efforts to enhance the field applicability of ML models and suggests future research directions. A recent interest in explainable artificial intelligence (XAI) was discussed in an effort to understand the most influencing environmental factors on algal blooms. XAI facilitates interpretations of ML model results, thereby enhancing the models' usability for decision-making in field management and improving their overall applicability in real-world settings. We also emphasize the significance of obtaining high-quality, field-representative data to enhance the efficiency of ML applications. The effectiveness of ML models in detecting and predicting algal blooms can be improved through management strategies for data quality, such as pre-treating missing data and integrating diverse datasets into a unified database. Overall, this paper presents a comprehensive review of the latest advancements in managing algal blooms using ML technology and proposes future research directions to enhance the utilization of ML techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ttracc完成签到 ,获得积分10
1秒前
2秒前
KYT完成签到,获得积分10
3秒前
4秒前
赵文若发布了新的文献求助10
5秒前
7秒前
lanxin完成签到,获得积分10
7秒前
沉醉完成签到 ,获得积分10
9秒前
吴世宇发布了新的文献求助10
10秒前
安白发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
昏睡的铭完成签到,获得积分10
14秒前
布蓝图完成签到 ,获得积分10
14秒前
上官若男应助中锅人采纳,获得10
15秒前
大模型应助漂亮的小夏采纳,获得10
17秒前
细腻沅完成签到,获得积分10
19秒前
SYLH应助lanxin采纳,获得10
19秒前
凡事多发布了新的文献求助10
19秒前
中锅人完成签到,获得积分20
19秒前
21秒前
善学以致用应助小帕采纳,获得10
21秒前
等下完这场雨完成签到,获得积分10
24秒前
所所应助凡事多采纳,获得10
24秒前
25秒前
风剑完成签到,获得积分10
26秒前
小马哥完成签到,获得积分10
26秒前
Angleli完成签到,获得积分10
26秒前
lings完成签到 ,获得积分10
26秒前
在水一方应助Hang采纳,获得30
27秒前
小小哈完成签到,获得积分10
27秒前
bommi发布了新的文献求助10
28秒前
平凡发布了新的文献求助10
29秒前
31秒前
litianahang完成签到,获得积分10
32秒前
32秒前
yan1994完成签到,获得积分10
33秒前
平凡完成签到,获得积分10
35秒前
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734585
求助须知:如何正确求助?哪些是违规求助? 3278533
关于积分的说明 10009882
捐赠科研通 2995161
什么是DOI,文献DOI怎么找? 1643223
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196