Recent advances in algal bloom detection and prediction technology using machine learning

水华 计算机科学 领域(数学) 布鲁姆 水质 水生生态系统 人类健康 环境科学 人工智能 机器学习 生态学 浮游植物 生物 营养物 医学 数学 环境卫生 纯数学
作者
Jungsu Park,Keval K. Patel,Woo Hyoung Lee
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:938: 173546-173546
标识
DOI:10.1016/j.scitotenv.2024.173546
摘要

Harmful algal blooms (HAB) including red tides and cyanobacteria are a significant environmental issue that can have harmful effects on aquatic ecosystems and human health. Traditional methods of detecting and managing algal blooms have been limited by their reliance on manual observation and analysis, which can be time-consuming and costly. Recent advances in machine learning (ML) technology have shown promise in improving the accuracy and efficiency of algal bloom detection and prediction. This paper provides an overview of the latest developments in using ML for algal bloom detection and prediction using various water quality parameters and environmental factors. First, we introduced ML for algal bloom prediction using regression and classification models. Then we explored image-based ML for algae detection by utilizing satellite images, surveillance cameras, and microscopic images. This study also highlights several real-world examples of successful implementation of ML for algal bloom detection and prediction. These examples show how ML can enhance the accuracy and efficiency of detecting and predicting algal blooms, contributing to the protection of aquatic ecosystems and human health. The study also outlines recent efforts to enhance the field applicability of ML models and suggests future research directions. A recent interest in explainable artificial intelligence (XAI) was discussed in an effort to understand the most influencing environmental factors on algal blooms. XAI facilitates interpretations of ML model results, thereby enhancing the models' usability for decision-making in field management and improving their overall applicability in real-world settings. We also emphasize the significance of obtaining high-quality, field-representative data to enhance the efficiency of ML applications. The effectiveness of ML models in detecting and predicting algal blooms can be improved through management strategies for data quality, such as pre-treating missing data and integrating diverse datasets into a unified database. Overall, this paper presents a comprehensive review of the latest advancements in managing algal blooms using ML technology and proposes future research directions to enhance the utilization of ML techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昴星引路完成签到 ,获得积分10
刚刚
dwls应助周周采纳,获得10
1秒前
1秒前
现实的大白完成签到 ,获得积分10
1秒前
1秒前
123发布了新的文献求助10
1秒前
今后应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
用头打碟发布了新的文献求助10
3秒前
毛豆应助科研通管家采纳,获得10
3秒前
江峰应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
什锦发布了新的文献求助10
3秒前
领导范儿应助paipaijian1888采纳,获得10
4秒前
田様应助阳光采纳,获得10
4秒前
香蕉觅云应助阳光采纳,获得10
4秒前
CipherSage应助阳光采纳,获得10
4秒前
科目三应助阳光采纳,获得10
4秒前
NexusExplorer应助阳光采纳,获得10
4秒前
orixero应助阳光采纳,获得10
4秒前
李健的小迷弟应助阳光采纳,获得10
4秒前
科研通AI2S应助阳光采纳,获得10
4秒前
咎青文发布了新的文献求助10
4秒前
4秒前
斯文败类应助文艺的电源采纳,获得10
4秒前
小二郎应助阳光采纳,获得10
4秒前
李健的小迷弟应助阳光采纳,获得10
4秒前
灵溪宗完成签到,获得积分0
5秒前
6秒前
Barry发布了新的文献求助10
6秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384