Polarization Guided HDR Reconstruction via Pixel-Wise Depolarization

像素 人工智能 计算机视觉 计算机科学 重影 高动态范围成像 偏振器 迭代重建 高动态范围 稳健性(进化) 极化(电化学) 动态范围 光学 物理 双折射 物理化学 基因 化学 生物化学
作者
Chu Zhou,Yufei Han,Minggui Teng,Jin Han,Si Li,Chao Xu,Boxin Shi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1774-1787 被引量:5
标识
DOI:10.1109/tip.2023.3251023
摘要

Taking photos with digital cameras often accompanies saturated pixels due to their limited dynamic range, and it is far too ill-posed to restore them. Capturing multiple low dynamic range images with bracketed exposures can make the problem less ill-posed, however, it is prone to ghosting artifacts caused by spatial misalignment among images. A polarization camera can capture four spatially-aligned and temporally-synchronized polarized images with different polarizer angles in a single shot, which can be used for ghost-free high dynamic range (HDR) reconstruction. However, real-world scenarios are still challenging since existing polarization-based HDR reconstruction methods treat all pixels in the same manner and only utilize the spatially-variant exposures of the polarized images (without fully exploiting the degree of polarization (DoP) and the angle of polarization (AoP) of the incoming light to the sensor, which encode abundant structural and contextual information of the scene) to handle the problem still in an ill-posed manner. In this paper, we propose a pixel-wise depolarization strategy to solve the polarization guided HDR reconstruction problem, by classifying the pixels based on their levels of ill-posedness in HDR reconstruction procedure and applying different solutions to different classes. To utilize the strategy with better generalization ability and higher robustness, we propose a network-physics-hybrid polarization-based HDR reconstruction pipeline along with a neural network tailored to it, fully exploiting the DoP and AoP. Experimental results show that our approach achieves state-of-the-art performance on both synthetic and real-world images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的小之完成签到,获得积分10
1秒前
健忘的柠檬完成签到 ,获得积分10
2秒前
guoxingliu完成签到,获得积分10
2秒前
zx完成签到 ,获得积分10
3秒前
宫城完成签到,获得积分10
3秒前
白夜完成签到 ,获得积分10
6秒前
yar举报LSY求助涉嫌违规
7秒前
netrandwalk完成签到,获得积分10
8秒前
FashionBoy应助Remote采纳,获得10
8秒前
蔫蔫完成签到 ,获得积分10
10秒前
10秒前
cp621完成签到,获得积分10
11秒前
damnxas完成签到,获得积分10
13秒前
隔壁老六完成签到,获得积分10
13秒前
zxh完成签到,获得积分10
13秒前
13秒前
MY完成签到 ,获得积分10
13秒前
14秒前
javier完成签到,获得积分10
15秒前
谁家那小谁完成签到,获得积分10
17秒前
隔壁老六发布了新的文献求助10
17秒前
积极问晴发布了新的文献求助10
18秒前
谨慎傲旋完成签到 ,获得积分0
18秒前
tananna完成签到,获得积分10
20秒前
21秒前
研新发布了新的文献求助10
21秒前
Ridley发布了新的文献求助10
22秒前
咕咕完成签到,获得积分10
23秒前
24秒前
布吉岛呀完成签到 ,获得积分10
25秒前
Wen完成签到 ,获得积分10
25秒前
王讯完成签到,获得积分10
25秒前
畅快的眼神完成签到 ,获得积分10
26秒前
27秒前
juan完成签到 ,获得积分10
27秒前
满意嘉懿发布了新的文献求助10
27秒前
kk完成签到,获得积分10
27秒前
28秒前
NexusExplorer应助yyt采纳,获得30
29秒前
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460301
求助须知:如何正确求助?哪些是违规求助? 3054479
关于积分的说明 9042593
捐赠科研通 2743853
什么是DOI,文献DOI怎么找? 1505334
科研通“疑难数据库(出版商)”最低求助积分说明 695677
邀请新用户注册赠送积分活动 694926