亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicontrast MRI Super-Resolution via Transformer-Empowered Multiscale Contextual Matching and Aggregation

计算机科学 规范化(社会学) 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 嵌入 数据挖掘 自然语言处理 数学 人类学 语言学 统计 哲学 社会学
作者
Jun Lyu,Guangyuan Li,Chengyan Wang,Qing Cai,Qi Dou,David Zhang,Jing Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12004-12014 被引量:24
标识
DOI:10.1109/tnnls.2023.3250491
摘要

Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts, which makes multicontrast super-resolution (SR) techniques possible and needful. Compared with single-contrast MRI SR, multicontrast SR is expected to produce higher quality images by exploiting a variety of complementary information embedded in different imaging contrasts. However, existing approaches still have two shortcomings: 1) most of them are convolution-based methods and, hence, weak in capturing long-range dependencies, which are essential for MR images with complicated anatomical patterns and 2) they ignore to make full use of the multicontrast features at different scales and lack effective modules to match and aggregate these features for faithful SR. To address these issues, we develop a novel multicontrast MRI SR network via transformer-empowered multiscale feature matching and aggregation, dubbed McMRSR ++ . First, we tame transformers to model long-range dependencies in both reference and target images at different scales. Then, a novel multiscale feature matching and aggregation method is proposed to transfer corresponding contexts from reference features at different scales to the target features and interactively aggregate them. Furthermore, a texture-preserving branch and a contrastive constraint are incorporated into our framework for enhancing the textural details in the SR images. Experimental results on both public and clinical in vivo datasets show that McMRSR ++ outperforms state-of-the-art methods under peak signal to noise ratio (PSNR), structure similarity index measure (SSIM), and root mean square error (RMSE) metrics significantly. Visual results demonstrate the superiority of our method in restoring structures, demonstrating its great potential to improve scan efficiency in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅小畅发布了新的文献求助10
2秒前
深情安青应助BNN1203381110采纳,获得20
31秒前
充电宝应助zhang采纳,获得50
32秒前
36秒前
46秒前
46秒前
Jaho发布了新的文献求助10
51秒前
zhang发布了新的文献求助50
53秒前
YifanWang应助科研通管家采纳,获得30
53秒前
58秒前
科目三应助Jaho采纳,获得30
58秒前
zhang完成签到,获得积分10
1分钟前
熊奎懿发布了新的文献求助80
1分钟前
领导范儿应助青柠采纳,获得10
1分钟前
CikY完成签到,获得积分10
1分钟前
1分钟前
清秀小霸王完成签到 ,获得积分10
1分钟前
我睡觉的时候不困完成签到 ,获得积分10
1分钟前
康康XY完成签到 ,获得积分10
1分钟前
大个应助熊奎懿采纳,获得10
1分钟前
Akim应助青柠采纳,获得10
1分钟前
1分钟前
flyingpig发布了新的文献求助20
1分钟前
MiaMia完成签到 ,获得积分10
1分钟前
2分钟前
青柠发布了新的文献求助10
2分钟前
热爱学习的小罗同学呀完成签到,获得积分10
2分钟前
2分钟前
shhoing应助flyingpig采纳,获得10
2分钟前
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
熊奎懿发布了新的文献求助10
2分钟前
季瑶完成签到 ,获得积分10
2分钟前
2分钟前
青柠发布了新的文献求助10
2分钟前
liuliuliu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528986
求助须知:如何正确求助?哪些是违规求助? 4618288
关于积分的说明 14562359
捐赠科研通 4557219
什么是DOI,文献DOI怎么找? 2497425
邀请新用户注册赠送积分活动 1477649
关于科研通互助平台的介绍 1448966