已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multicontrast MRI Super-Resolution via Transformer-Empowered Multiscale Contextual Matching and Aggregation

计算机科学 规范化(社会学) 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 嵌入 数据挖掘 自然语言处理 数学 人类学 语言学 统计 哲学 社会学
作者
Jun Lyu,Guangyuan Li,Chengyan Wang,Qing Cai,Qi Dou,David Zhang,Jing Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:10
标识
DOI:10.1109/tnnls.2023.3250491
摘要

Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts, which makes multicontrast super-resolution (SR) techniques possible and needful. Compared with single-contrast MRI SR, multicontrast SR is expected to produce higher quality images by exploiting a variety of complementary information embedded in different imaging contrasts. However, existing approaches still have two shortcomings: 1) most of them are convolution-based methods and, hence, weak in capturing long-range dependencies, which are essential for MR images with complicated anatomical patterns and 2) they ignore to make full use of the multicontrast features at different scales and lack effective modules to match and aggregate these features for faithful SR. To address these issues, we develop a novel multicontrast MRI SR network via transformer-empowered multiscale feature matching and aggregation, dubbed McMRSR ++ . First, we tame transformers to model long-range dependencies in both reference and target images at different scales. Then, a novel multiscale feature matching and aggregation method is proposed to transfer corresponding contexts from reference features at different scales to the target features and interactively aggregate them Furthermore, a texture-preserving branch and a contrastive constraint are incorporated into our framework for enhancing the textural details in the SR images. Experimental results on both public and clinical in vivo datasets show that McMRSR ++ outperforms state-of-the-art methods under peak signal to noise ratio (PSNR), structure similarity index measure (SSIM), and root mean square error (RMSE) metrics significantly. Visual results demonstrate the superiority of our method in restoring structures, demonstrating its great potential to improve scan efficiency in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到,获得积分10
1秒前
Q123ba叭完成签到 ,获得积分10
9秒前
陈海伦完成签到 ,获得积分10
9秒前
JamesPei应助牛波1采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
伊倾发布了新的文献求助50
13秒前
14秒前
万能图书馆应助DR采纳,获得10
14秒前
小木星完成签到,获得积分10
16秒前
orixero应助影子采纳,获得10
17秒前
科研通AI2S应助务实的绮山采纳,获得10
17秒前
NMZN发布了新的文献求助10
18秒前
hucheng发布了新的文献求助10
18秒前
平淡的发卡给平淡的发卡的求助进行了留言
19秒前
19秒前
踏实怜梦发布了新的文献求助40
21秒前
研友_8WOJ08发布了新的文献求助10
22秒前
harmony完成签到 ,获得积分10
22秒前
杰杰发布了新的文献求助10
24秒前
脆脆鲨鱼完成签到,获得积分10
24秒前
阿東发布了新的文献求助10
24秒前
zou发布了新的文献求助10
25秒前
舒适荣轩完成签到,获得积分10
25秒前
lalala应助hucheng采纳,获得20
27秒前
pluto应助迷路的曼梅采纳,获得10
28秒前
jingtan关注了科研通微信公众号
30秒前
SciGPT应助L_nan采纳,获得10
31秒前
闵卷完成签到,获得积分10
34秒前
DR完成签到,获得积分10
35秒前
35秒前
36秒前
苹果鸽子完成签到,获得积分10
38秒前
39秒前
40秒前
40秒前
DR发布了新的文献求助10
41秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129961
求助须知:如何正确求助?哪些是违规求助? 2780706
关于积分的说明 7749763
捐赠科研通 2436010
什么是DOI,文献DOI怎么找? 1294449
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570