Multicontrast MRI Super-Resolution via Transformer-Empowered Multiscale Contextual Matching and Aggregation

计算机科学 规范化(社会学) 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 嵌入 数据挖掘 自然语言处理 数学 人类学 语言学 统计 哲学 社会学
作者
Jun Lyu,Guangyuan Li,Chengyan Wang,Qing Cai,Qi Dou,David Zhang,Jing Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:10
标识
DOI:10.1109/tnnls.2023.3250491
摘要

Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts, which makes multicontrast super-resolution (SR) techniques possible and needful. Compared with single-contrast MRI SR, multicontrast SR is expected to produce higher quality images by exploiting a variety of complementary information embedded in different imaging contrasts. However, existing approaches still have two shortcomings: 1) most of them are convolution-based methods and, hence, weak in capturing long-range dependencies, which are essential for MR images with complicated anatomical patterns and 2) they ignore to make full use of the multicontrast features at different scales and lack effective modules to match and aggregate these features for faithful SR. To address these issues, we develop a novel multicontrast MRI SR network via transformer-empowered multiscale feature matching and aggregation, dubbed McMRSR ++ . First, we tame transformers to model long-range dependencies in both reference and target images at different scales. Then, a novel multiscale feature matching and aggregation method is proposed to transfer corresponding contexts from reference features at different scales to the target features and interactively aggregate them Furthermore, a texture-preserving branch and a contrastive constraint are incorporated into our framework for enhancing the textural details in the SR images. Experimental results on both public and clinical in vivo datasets show that McMRSR ++ outperforms state-of-the-art methods under peak signal to noise ratio (PSNR), structure similarity index measure (SSIM), and root mean square error (RMSE) metrics significantly. Visual results demonstrate the superiority of our method in restoring structures, demonstrating its great potential to improve scan efficiency in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Donk完成签到 ,获得积分10
1秒前
2秒前
文静元霜发布了新的文献求助10
2秒前
Jim发布了新的文献求助10
3秒前
往返发布了新的文献求助10
6秒前
8秒前
9秒前
CipherSage应助文静元霜采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
Duan完成签到 ,获得积分10
11秒前
巴斯光年发布了新的文献求助10
12秒前
12秒前
lijiajie发布了新的文献求助10
13秒前
13秒前
14秒前
CAOHOU应助韩凡采纳,获得10
17秒前
泡泡糖发布了新的文献求助10
17秒前
xu完成签到,获得积分10
17秒前
Eddie1143发布了新的文献求助10
18秒前
20秒前
sdjcni发布了新的文献求助10
21秒前
lijiajie完成签到,获得积分10
24秒前
25秒前
科研通AI2S应助务实源智采纳,获得30
25秒前
MchemG应助heyihao采纳,获得30
26秒前
27秒前
30秒前
30秒前
31秒前
天天完成签到,获得积分20
32秒前
SciGPT应助超自然采纳,获得10
34秒前
阿湫发布了新的文献求助10
34秒前
汉堡包应助缓慢乌冬面采纳,获得10
34秒前
LuoYixiang发布了新的文献求助10
35秒前
38秒前
orixero应助哈哈哈哈哈采纳,获得10
43秒前
47秒前
小马甲应助向日葵采纳,获得10
47秒前
CodeCraft应助玖Nine采纳,获得10
50秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167