An improved swarm model with informed agents to prevent swarm-splitting

群体行为 计算机科学 群机器人 人工智能 数学优化 数学
作者
Bei Xu,Guanghan Bai,Tao Liu,Liwei Chen,Yunan Zhang,Junyong Tao
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:169: 113296-113296 被引量:11
标识
DOI:10.1016/j.chaos.2023.113296
摘要

The spatial aggregation of a large number of individuals and the coordination of individual behavior within the group are the two core characteristics of swarm behavior. Swarm-splitting blocks the information interaction between individuals, making it difficult for a swarm to stay together and achieve cooperation. In this respect, an improved distributed swarm model with a dual-adaptive feedback mechanism to prevent swarm-splitting and to improve the probability of reaching the target area is proposed. The first feedback mechanism is for informed agents to balance goal-oriented and social-oriented behavior, which helps informed agents maintain navigation accuracy while staying close to their neighbors. The second feedback mechanism is for followers to adjust their perception range adaptively, which helps the followers select appropriate neighbors based on the state of the nearby agents. Four metrics are provided to evaluate the swarm's performance, namely swarm connectivity, the average degree of temporal dependence, the average degree of temporal dependence, and the arrival rate. Simulation results show that the proposed swarm model outperforms the existing swarm models under the four metrics. The proposed model can be used for the distributed migration motion of large-scale unmanned swarms, such as navigation and target tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yar应助浅笑采纳,获得10
2秒前
2秒前
2秒前
why完成签到,获得积分20
4秒前
jessicazhong发布了新的文献求助10
5秒前
bkagyin应助研友_Z11kkZ采纳,获得10
5秒前
木木应助开心人达采纳,获得10
7秒前
7秒前
见闻完成签到,获得积分10
8秒前
1111111发布了新的文献求助10
8秒前
10秒前
我爱科研发布了新的文献求助10
13秒前
见闻发布了新的文献求助10
14秒前
Jasper应助程荷芬采纳,获得10
14秒前
爆米花应助why采纳,获得10
15秒前
16秒前
17秒前
17秒前
李爱国应助Xwu采纳,获得20
19秒前
an发布了新的文献求助10
20秒前
花雨落123发布了新的文献求助10
21秒前
23秒前
24秒前
灵泽完成签到,获得积分20
25秒前
orixero应助hvivi6采纳,获得10
25秒前
Pam发布了新的文献求助10
27秒前
27秒前
灵泽发布了新的文献求助10
27秒前
28秒前
研友_Z11kkZ发布了新的文献求助10
29秒前
29秒前
斜玉发布了新的文献求助10
30秒前
xu发布了新的文献求助10
30秒前
Snow完成签到 ,获得积分10
30秒前
一番星完成签到,获得积分10
32秒前
林子完成签到,获得积分20
33秒前
Srui完成签到,获得积分10
34秒前
CipherSage应助qiao采纳,获得10
34秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075