已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
钱小豪发布了新的文献求助10
2秒前
Nakacoke77完成签到,获得积分10
3秒前
大可完成签到 ,获得积分10
4秒前
yan完成签到 ,获得积分10
4秒前
归尘发布了新的文献求助10
5秒前
复杂的可乐完成签到 ,获得积分10
5秒前
123zyx完成签到 ,获得积分10
5秒前
黎乐荷发布了新的文献求助10
6秒前
xingxing完成签到 ,获得积分10
6秒前
zhaoxi完成签到 ,获得积分10
7秒前
7秒前
霸气小蜜蜂完成签到 ,获得积分10
7秒前
Jyy77完成签到 ,获得积分10
8秒前
任性大米完成签到 ,获得积分10
8秒前
nater1ver完成签到,获得积分10
9秒前
xlh完成签到 ,获得积分10
10秒前
坚定寻冬发布了新的文献求助10
11秒前
安静的嘚嘚完成签到 ,获得积分10
12秒前
qiang344完成签到 ,获得积分10
12秒前
魔音甜菜完成签到 ,获得积分10
12秒前
楠楠2001完成签到 ,获得积分10
12秒前
充电宝应助多年以后采纳,获得10
12秒前
766465完成签到 ,获得积分0
13秒前
无花果应助直觉采纳,获得10
14秒前
不知道取啥名完成签到 ,获得积分10
14秒前
andrele发布了新的文献求助10
14秒前
Ren完成签到 ,获得积分10
14秒前
shuang完成签到 ,获得积分10
15秒前
王某人完成签到 ,获得积分10
15秒前
阿姨洗铁路完成签到 ,获得积分10
16秒前
16秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
16秒前
勤劳寒烟完成签到,获得积分10
17秒前
wsb76完成签到 ,获得积分10
17秒前
陶醉的烤鸡完成签到 ,获得积分10
17秒前
麦子完成签到 ,获得积分10
17秒前
多年以后完成签到,获得积分10
17秒前
numagok完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989949
求助须知:如何正确求助?哪些是违规求助? 3532017
关于积分的说明 11255865
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216

今日热心研友

fanyueyue
5
热心市民小红花
10
酷炫的一笑
1
momo
1
孙燕
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10