亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助三口一头猪采纳,获得10
20秒前
31秒前
yangbohhan完成签到,获得积分10
31秒前
yangbohhan发布了新的文献求助10
38秒前
科研通AI5应助yangbohhan采纳,获得10
47秒前
51秒前
Nill发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
docyuchi发布了新的文献求助10
1分钟前
Orange应助docyuchi采纳,获得10
1分钟前
docyuchi完成签到,获得积分10
1分钟前
赘婿应助爱听歌笑寒采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助热心愫采纳,获得30
2分钟前
春物叙事曲完成签到,获得积分10
3分钟前
3分钟前
廖梦琪完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
学霸宇大王完成签到 ,获得积分10
4分钟前
4分钟前
风轻萤发布了新的文献求助10
4分钟前
4分钟前
4分钟前
_ban完成签到 ,获得积分10
4分钟前
小红书求接接接接一篇完成签到,获得积分10
4分钟前
5分钟前
潮汐发布了新的文献求助10
5分钟前
6分钟前
不羁发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611456
求助须知:如何正确求助?哪些是违规求助? 4016969
关于积分的说明 12435954
捐赠科研通 3698871
什么是DOI,文献DOI怎么找? 2039823
邀请新用户注册赠送积分活动 1072572
科研通“疑难数据库(出版商)”最低求助积分说明 956270