Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
引子完成签到,获得积分10
刚刚
机智的阿振完成签到,获得积分10
1秒前
KatzeBaliey完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
yar应助大饼采纳,获得10
4秒前
mammer应助一朵云采纳,获得20
4秒前
4秒前
Jason完成签到,获得积分10
5秒前
害羞凤灵完成签到,获得积分10
5秒前
芳芳完成签到,获得积分10
6秒前
风起枫落完成签到 ,获得积分10
6秒前
xkhxh完成签到 ,获得积分10
7秒前
zzq778发布了新的文献求助10
7秒前
小马甲应助双儿采纳,获得10
8秒前
江南烟雨如笙完成签到 ,获得积分10
9秒前
王洋应助枕星采纳,获得10
12秒前
笨笨寒天完成签到,获得积分10
12秒前
Hello应助zzq778采纳,获得10
12秒前
13秒前
铜豌豆完成签到 ,获得积分10
13秒前
稞小弟完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
zzzz发布了新的文献求助10
17秒前
小马完成签到,获得积分10
19秒前
19秒前
一朵云完成签到,获得积分10
20秒前
JSY发布了新的文献求助30
21秒前
浩铭完成签到,获得积分10
22秒前
Iven发布了新的文献求助10
22秒前
24秒前
26秒前
冷酷的天晴完成签到,获得积分10
26秒前
ysy完成签到,获得积分10
27秒前
27秒前
yum完成签到,获得积分20
28秒前
Ava应助专注的白柏采纳,获得10
28秒前
何如当初莫相识完成签到,获得积分10
28秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029