Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjcy应助limumu采纳,获得10
刚刚
春夏爱科研完成签到,获得积分10
刚刚
森鹿应助氪金读书采纳,获得120
2秒前
稳重书包完成签到 ,获得积分10
2秒前
吴思瑞发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
8秒前
8秒前
9秒前
11秒前
热情的豁发布了新的文献求助10
11秒前
顺利发布了新的文献求助10
12秒前
joe完成签到,获得积分10
13秒前
Kev完成签到,获得积分10
13秒前
13秒前
小蘑菇应助谦让绯采纳,获得30
14秒前
大模型应助小路采纳,获得10
14秒前
fy发布了新的文献求助10
17秒前
jevon应助吃猫的鱼采纳,获得10
17秒前
Xdz发布了新的文献求助10
17秒前
18秒前
Owen应助心理学小白白白白采纳,获得50
18秒前
许飞飞飞发布了新的文献求助30
19秒前
热乎乎的小空气完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
上官万仇发布了新的文献求助10
23秒前
可爱的函函应助Chloe955采纳,获得10
26秒前
ZrAug21发布了新的文献求助10
26秒前
轻轻巧巧完成签到,获得积分20
26秒前
26秒前
27秒前
ddd发布了新的文献求助10
27秒前
oyly完成签到 ,获得积分10
27秒前
28秒前
月亮完成签到,获得积分20
29秒前
雷寒云发布了新的文献求助10
30秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856751
关于积分的说明 8106993
捐赠科研通 2522025
什么是DOI,文献DOI怎么找? 1355312
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478