Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anna发布了新的文献求助10
刚刚
YWang发布了新的文献求助10
3秒前
3秒前
NiNi完成签到,获得积分10
5秒前
悦耳寒松发布了新的文献求助10
5秒前
sijing发布了新的文献求助10
6秒前
7777完成签到,获得积分10
6秒前
求求了,让孩子毕业吧完成签到,获得积分10
7秒前
7秒前
10秒前
我是老大应助LiuJinhui采纳,获得10
11秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
清久完成签到,获得积分10
15秒前
牛马码字员完成签到,获得积分10
15秒前
橙果果发布了新的文献求助20
16秒前
所所应助11采纳,获得10
16秒前
tt大耳朵完成签到,获得积分10
17秒前
17秒前
18秒前
枫之林发布了新的文献求助10
18秒前
辛俊辰发布了新的文献求助10
18秒前
xiao完成签到 ,获得积分10
18秒前
lemongulf完成签到 ,获得积分10
19秒前
发表多篇高ifsci的第一作者完成签到,获得积分20
20秒前
阅遍SCI完成签到,获得积分10
20秒前
21秒前
飞鱼z完成签到,获得积分10
22秒前
LiuJinhui发布了新的文献求助10
22秒前
Infinit发布了新的文献求助10
24秒前
24秒前
24秒前
悦耳寒松完成签到,获得积分10
25秒前
chun完成签到,获得积分10
27秒前
干煸鸡完成签到,获得积分10
30秒前
30秒前
可爱的函函应助ah爱科研采纳,获得10
31秒前
33秒前
CAOHOU应助Infinit采纳,获得10
33秒前
精美礼物完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073