Development and validation of machine learning models and nomograms for predicting the surgical difficulty of laparoscopic resection in rectal cancer

列线图 医学 逻辑回归 接收机工作特性 随机森林 Lasso(编程语言) 决策树 支持向量机 队列 人工智能 机器学习 统计 肿瘤科 内科学 计算机科学 数学 万维网
作者
Xiangyong Li,Zeyang Zhou,Bing Zhu,Yong Wu,Chungen Xing
出处
期刊:World Journal of Surgical Oncology [Springer Nature]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12957-024-03389-3
摘要

Abstract Background The objective of this study is to develop and validate a machine learning (ML) prediction model for the assessment of laparoscopic total mesorectal excision (LaTME) surgery difficulty, as well as to identify independent risk factors that influence surgical difficulty. Establishing a nomogram aims to assist clinical practitioners in formulating more effective surgical plans before the procedure. Methods This study included 186 patients with rectal cancer who underwent LaTME from January 2018 to December 2020. They were divided into a training cohort ( n = 131) versus a validation cohort ( n = 55). The difficulty of LaTME was defined based on Escal’s et al. scoring criteria with modifications. We utilized Lasso regression to screen the preoperative clinical characteristic variables and intraoperative information most relevant to surgical difficulty for the development and validation of four ML models: logistic regression (LR), support vector machine (SVM), random forest (RF), and decision tree (DT). The performance of the model was assessed based on the area under the receiver operating characteristic curve(AUC), sensitivity, specificity, and accuracy. Logistic regression-based column-line plots were created to visualize the predictive model. Consistency statistics (C-statistic) and calibration curves were used to discriminate and calibrate the nomogram, respectively. Results In the validation cohort, all four ML models demonstrate good performance: SVM AUC = 0.987, RF AUC = 0.953, LR AUC = 0.950, and DT AUC = 0.904. To enhance visual evaluation, a logistic regression-based nomogram has been established. Predictive factors included in the nomogram are body mass index (BMI), distance between the tumor to the dentate line ≤ 10 cm, radiodensity of visceral adipose tissue (VAT), area of subcutaneous adipose tissue (SAT), tumor diameter >3 cm, and comorbid hypertension. Conclusion In this study, four ML models based on intraoperative and preoperative risk factors and a nomogram based on logistic regression may be of help to surgeons in evaluating the surgical difficulty before operation and adopting appropriate responses and surgical protocols.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助文艺水蜜桃采纳,获得10
刚刚
刚刚
刚刚
科研通AI5应助BILNQPL采纳,获得10
1秒前
流白完成签到,获得积分10
1秒前
1秒前
Yolo完成签到,获得积分20
1秒前
YY应助胖豆采纳,获得10
2秒前
2秒前
jagger发布了新的文献求助10
2秒前
2秒前
3秒前
ChemistryZyh完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
充电宝应助朴素的士晋采纳,获得10
4秒前
4秒前
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
6秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
6秒前
6秒前
CodeCraft应助Mumu采纳,获得10
7秒前
飘逸数据线完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
Gauss完成签到,获得积分0
7秒前
丘奇完成签到,获得积分10
7秒前
木子发布了新的文献求助10
7秒前
标致的方盒完成签到,获得积分10
7秒前
8秒前
致橡树完成签到,获得积分20
8秒前
Yolo发布了新的文献求助10
8秒前
yyy完成签到,获得积分20
9秒前
9秒前
9秒前
yoon发布了新的文献求助10
9秒前
脑洞疼应助香蕉静芙采纳,获得10
9秒前
JTB完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762