ProSST: Protein Language Modeling with Quantized Structure and Disentangled Attention

计算机科学 语言学 自然语言处理 哲学
作者
Mingchen Li,Yang Tan,Xinzhu Ma,Bozitao Zhong,Huiqun Yu,Ziyi Zhou,Wanli Ouyang,Bingxin Zhou,Liang Hong,Pan Tan
标识
DOI:10.1101/2024.04.15.589672
摘要

Abstract Protein language models (PLMs) have shown remarkable capabilities in various protein function prediction tasks. However, while protein function is intricately tied to structure, most existing PLMs do not incorporate protein structure information. To address this issue, we introduce ProSST, a Transformer-based protein language model that seamlessly integrates both protein sequences and structures. ProSST incorporates a structure quantization module and a Transformer architecture with disentangled attention. The structure quantization module translates a 3D protein structure into a sequence of discrete tokens by first serializing the protein structure into residue-level local structures and then embeds them into dense vector space. These vectors are then quantized into discrete structure tokens by a pre-trained clustering model. These tokens serve as an effective protein structure representation. Furthermore, ProSST explicitly learns the relationship between protein residue token sequences and structure token sequences through the sequence-structure disentangled attention. We pre-train ProSST on millions of protein structures using a masked language model objective, enabling it to learn comprehensive contextual representations of proteins. To evaluate the proposed ProSST, we conduct extensive experiments on the zero-shot mutation effect prediction and several supervised downstream tasks, where ProSST achieves the state-of-the-art performance among all baselines. Our code and pretrained models are publicly available 2 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
执着的若灵完成签到,获得积分10
刚刚
刚刚
共享精神应助听话当小当采纳,获得10
刚刚
hangongyishan发布了新的文献求助10
刚刚
1秒前
互助遵法尚德应助忆韵采纳,获得10
1秒前
yull完成签到,获得积分10
1秒前
yu发布了新的文献求助10
3秒前
3秒前
Xzmmmm发布了新的文献求助10
4秒前
杜大圣发布了新的文献求助10
5秒前
drsunofoph123发布了新的文献求助10
5秒前
alan完成签到,获得积分20
6秒前
隐形曼青应助安生采纳,获得10
6秒前
hhhh关注了科研通微信公众号
6秒前
执着夏岚发布了新的文献求助30
6秒前
田田发布了新的文献求助10
6秒前
6秒前
7秒前
bxj发布了新的文献求助10
7秒前
施青文完成签到,获得积分10
7秒前
alan发布了新的文献求助10
8秒前
9秒前
美好乐松应助化化化化雪采纳,获得10
9秒前
能干曼岚关注了科研通微信公众号
9秒前
FashionBoy应助昨天采纳,获得10
10秒前
10秒前
hangongyishan完成签到,获得积分10
11秒前
Bi发布了新的文献求助30
11秒前
drsunofoph123完成签到,获得积分10
12秒前
12秒前
烟花应助小谷采纳,获得10
12秒前
8g2e2完成签到,获得积分10
12秒前
13秒前
寻道图强应助123321采纳,获得30
13秒前
李健的小迷弟应助huang1采纳,获得10
14秒前
14秒前
庚朝年完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123475
求助须知:如何正确求助?哪些是违规求助? 2773977
关于积分的说明 7720386
捐赠科研通 2429699
什么是DOI,文献DOI怎么找? 1290451
科研通“疑难数据库(出版商)”最低求助积分说明 621883
版权声明 600268