Mechanisms of extensive fracture propagation post-coalescence: A machine learning assisted discovery

聚结(物理) 断裂力学 脆性 计算机科学 支持向量机 材料科学 人工智能 结构工程 工程类 物理 复合材料 天体生物学
作者
Yuteng Jin,Siddharth Misra,Esteban Rougier
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111401-111401 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111401
摘要

This study investigates the spatial arrangement of existing crack pathways and the crack network at the time of crack coalescence in brittle rock-like materials, focusing on the factors that contribute to rapid and extensive crack growth immediately afterward. To that end, we extract relevant informative features from simulated crack networks generated by the HOSS simulator and employ machine learning methods to establish correlations between these features and the initiation of rapid and extensive crack propagation following coalescence. These features serve as indicators revealing the underlying mechanisms of crack propagation and coalescence. We utilize a Support Vector Machine (SVM) classifier with an RBF kernel to delineate the decision boundary between samples experiencing rapid and extensive crack propagation post-coalescence and those that do not. Through permutation feature importance evaluation, we identify the seven most crucial crack-network features associated with rapid and extensive crack growth. Notably, these features are particularly related to the status of energy buildup, energy distribution, and energy release inside the material. This study aims to elucidate the rapid and extensive fracture propagation post-coalescence in terms of the KDE-based and subgraph-based features. The fundamental assumption guiding this study is that direct observation of the stress and energy state within the material is not feasible. Consequently, understanding the phenomena of coalescence and extensive fracture propagation post-coalescence requires an exploration of the mechanisms observed through the spatiotemporal evolution of the crack network under uniaxial compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曼曼完成签到,获得积分10
2秒前
落寞代亦发布了新的文献求助10
2秒前
岳阳张震岳完成签到,获得积分10
2秒前
Linda发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
科研通AI2S应助曼曼采纳,获得30
5秒前
6秒前
阿良完成签到 ,获得积分10
6秒前
渊渟岳峙完成签到,获得积分10
7秒前
阿茗完成签到,获得积分10
8秒前
清秀的大山完成签到,获得积分10
9秒前
111111发布了新的文献求助10
10秒前
WANDour完成签到,获得积分10
12秒前
三石发布了新的文献求助10
12秒前
渊渟岳峙发布了新的文献求助10
14秒前
14秒前
14秒前
李爱国应助初末采纳,获得10
16秒前
Zhang完成签到,获得积分10
18秒前
孟一完成签到,获得积分10
20秒前
luoman5656完成签到,获得积分10
20秒前
机灵又蓝完成签到 ,获得积分10
21秒前
25秒前
28秒前
小林野完成签到,获得积分10
29秒前
科目三应助小程别放弃采纳,获得50
29秒前
lzb完成签到,获得积分10
30秒前
代代发布了新的文献求助10
32秒前
jiong发布了新的文献求助10
32秒前
nowfitness完成签到,获得积分0
34秒前
GoGoGo完成签到,获得积分10
35秒前
36秒前
AJY完成签到,获得积分10
37秒前
37秒前
David完成签到,获得积分10
38秒前
38秒前
舒适的半芹应助xdc采纳,获得10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331