Mechanisms of extensive fracture propagation post-coalescence: A machine learning assisted discovery

聚结(物理) 断裂力学 脆性 计算机科学 支持向量机 材料科学 人工智能 结构工程 工程类 物理 复合材料 天体生物学
作者
Yuteng Jin,Siddharth Misra,Esteban Rougier
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111401-111401 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111401
摘要

This study investigates the spatial arrangement of existing crack pathways and the crack network at the time of crack coalescence in brittle rock-like materials, focusing on the factors that contribute to rapid and extensive crack growth immediately afterward. To that end, we extract relevant informative features from simulated crack networks generated by the HOSS simulator and employ machine learning methods to establish correlations between these features and the initiation of rapid and extensive crack propagation following coalescence. These features serve as indicators revealing the underlying mechanisms of crack propagation and coalescence. We utilize a Support Vector Machine (SVM) classifier with an RBF kernel to delineate the decision boundary between samples experiencing rapid and extensive crack propagation post-coalescence and those that do not. Through permutation feature importance evaluation, we identify the seven most crucial crack-network features associated with rapid and extensive crack growth. Notably, these features are particularly related to the status of energy buildup, energy distribution, and energy release inside the material. This study aims to elucidate the rapid and extensive fracture propagation post-coalescence in terms of the KDE-based and subgraph-based features. The fundamental assumption guiding this study is that direct observation of the stress and energy state within the material is not feasible. Consequently, understanding the phenomena of coalescence and extensive fracture propagation post-coalescence requires an exploration of the mechanisms observed through the spatiotemporal evolution of the crack network under uniaxial compression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卓诗云发布了新的文献求助10
刚刚
糖果屋发布了新的文献求助10
刚刚
Jandy发布了新的文献求助30
1秒前
2秒前
追寻澜完成签到,获得积分10
2秒前
BK2008完成签到,获得积分10
3秒前
orixero应助碧蓝的曼岚采纳,获得10
3秒前
qq78910发布了新的文献求助10
3秒前
hg秀秀完成签到 ,获得积分10
3秒前
mimimi完成签到 ,获得积分10
5秒前
追寻澜发布了新的文献求助10
5秒前
6秒前
6秒前
小酒馆完成签到,获得积分10
6秒前
6秒前
暴躁的依秋完成签到,获得积分20
8秒前
9秒前
cctv18应助张爱学采纳,获得10
10秒前
隐形路灯发布了新的文献求助10
11秒前
qq78910完成签到,获得积分10
15秒前
xxy完成签到,获得积分10
15秒前
仙人殊恍惚完成签到,获得积分10
16秒前
111发布了新的文献求助10
16秒前
17秒前
19秒前
xxy发布了新的文献求助10
20秒前
乐乐应助步步高采纳,获得10
20秒前
卓诗云发布了新的文献求助10
22秒前
慕青应助戴先森采纳,获得10
22秒前
kuilijiu完成签到,获得积分20
22秒前
22秒前
可爱的函函应助kk采纳,获得10
24秒前
25秒前
25秒前
miro完成签到,获得积分10
25秒前
26秒前
英俊的铭应助柔弱紊采纳,获得10
26秒前
日月同辉完成签到,获得积分10
27秒前
winterm完成签到,获得积分20
28秒前
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243931
求助须知:如何正确求助?哪些是违规求助? 2887823
关于积分的说明 8249972
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384595
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625907