Mechanisms of extensive fracture propagation post-coalescence: A machine learning assisted discovery

聚结(物理) 断裂力学 脆性 计算机科学 支持向量机 材料科学 人工智能 结构工程 工程类 物理 复合材料 天体生物学
作者
Yuteng Jin,Siddharth Misra,Esteban Rougier
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:214: 111401-111401 被引量:1
标识
DOI:10.1016/j.ymssp.2024.111401
摘要

This study investigates the spatial arrangement of existing crack pathways and the crack network at the time of crack coalescence in brittle rock-like materials, focusing on the factors that contribute to rapid and extensive crack growth immediately afterward. To that end, we extract relevant informative features from simulated crack networks generated by the HOSS simulator and employ machine learning methods to establish correlations between these features and the initiation of rapid and extensive crack propagation following coalescence. These features serve as indicators revealing the underlying mechanisms of crack propagation and coalescence. We utilize a Support Vector Machine (SVM) classifier with an RBF kernel to delineate the decision boundary between samples experiencing rapid and extensive crack propagation post-coalescence and those that do not. Through permutation feature importance evaluation, we identify the seven most crucial crack-network features associated with rapid and extensive crack growth. Notably, these features are particularly related to the status of energy buildup, energy distribution, and energy release inside the material. This study aims to elucidate the rapid and extensive fracture propagation post-coalescence in terms of the KDE-based and subgraph-based features. The fundamental assumption guiding this study is that direct observation of the stress and energy state within the material is not feasible. Consequently, understanding the phenomena of coalescence and extensive fracture propagation post-coalescence requires an exploration of the mechanisms observed through the spatiotemporal evolution of the crack network under uniaxial compression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波菌完成签到,获得积分10
刚刚
1秒前
小乖完成签到,获得积分10
1秒前
大意的飞莲完成签到 ,获得积分10
1秒前
2秒前
2秒前
王京华发布了新的文献求助10
2秒前
平常亦凝关注了科研通微信公众号
2秒前
3秒前
zzsy完成签到,获得积分10
3秒前
领导范儿应助道天采纳,获得10
3秒前
稳重紫蓝完成签到 ,获得积分10
4秒前
科研通AI2S应助于特采纳,获得10
4秒前
zmz应助郑大钱采纳,获得10
5秒前
5秒前
5秒前
lizi完成签到,获得积分10
5秒前
5秒前
6秒前
春雨发布了新的文献求助10
6秒前
朵朵发布了新的文献求助10
6秒前
6秒前
顾矜应助张垚采纳,获得10
7秒前
冷傲松鼠完成签到 ,获得积分10
7秒前
邵初蓝完成签到,获得积分10
8秒前
9秒前
燕燕完成签到 ,获得积分10
9秒前
傻傻的修洁完成签到,获得积分10
9秒前
9秒前
uf欧发布了新的文献求助10
9秒前
称心的灵枫完成签到 ,获得积分20
9秒前
9秒前
10秒前
zik应助yy采纳,获得10
10秒前
10秒前
小蘑菇应助yiyi采纳,获得10
10秒前
炸鸡加热发布了新的文献求助10
10秒前
啊啊啊啊发布了新的文献求助10
10秒前
陈住气完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034