FTransCNN: Fusing Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 模糊逻辑 变压器 尺度空间分割 图像分割 计算机视觉 量子力学 物理 电压
作者
Weiping Ding,Haipeng Wang,Jiashuang Huang,Hengrong Ju,Yu Geng,Chin‐Teng Lin,Witold Pedrycz
出处
期刊:Information Fusion [Elsevier]
卷期号:99: 101880-101880 被引量:30
标识
DOI:10.1016/j.inffus.2023.101880
摘要

The accurate segmentation of medical images plays a crucial role in diagnosing and treating diseases. Although many methods now use multimodal joint segmentation, the joint use of segmentation features extracted by multiple models can lead to heterogeneity and uncertainty. Unreasonable fusion methods cannot exploit the advantages of multiple models and still lack good performance in segmentation. Therefore, this study proposes the FTransCNN model, which is composed of a convolutional neural network (CNN) and Transformer and is based on a fuzzy fusion strategy that jointly utilizes the features extracted by a CNN and Transformer through a new fuzzy fusion module. First, the CNN and Transformer act as the backbone network for parallel feature extraction. Second, channel attention is used to promote the global key information of Transformer to improve the feature representation ability, and spatial attention is used to enhance the local details of CNN features and suppress irrelevant regions. Third, the proposed model applies the Hadamard product to model fine-grained interactions between the two branches and uses the Choquet fuzzy integral to suppress heterogeneity and uncertainty in fused features. Fourth, FTransCNN employs fuzzy attention fusion module (FAFM) hierarchical upsampling to effectively capture both low-level spatial features and high-level semantic context. Finally, the new model obtains the final segmentation result by using the deconvolution and results in an improvement in segmentation. The experimental results on Chest X-ray and Kvasir-SEG dataset show that FTransCNN has better performance on segmentation tasks than the-state-of-the-art deep segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mayimo完成签到,获得积分10
刚刚
1秒前
淡淡绮玉完成签到,获得积分10
1秒前
耳东陈完成签到 ,获得积分10
1秒前
1秒前
Anx1ous完成签到,获得积分10
2秒前
2秒前
稀松完成签到,获得积分0
3秒前
科目三应助Sekiro采纳,获得10
3秒前
脑洞疼应助阿尔法贝塔采纳,获得10
4秒前
乐乐发布了新的文献求助10
4秒前
heyvan完成签到 ,获得积分10
4秒前
啦啦啦发布了新的文献求助10
4秒前
shufessm完成签到,获得积分10
4秒前
chichenglin发布了新的文献求助10
6秒前
科研通AI2S应助PUTIDAXIAN采纳,获得10
6秒前
炸裂的乌龟完成签到 ,获得积分10
7秒前
Jan完成签到,获得积分10
7秒前
Jasper应助syangZ采纳,获得10
8秒前
pcyang完成签到,获得积分10
8秒前
益达发布了新的文献求助10
8秒前
had完成签到,获得积分10
8秒前
溪水完成签到 ,获得积分10
9秒前
温柔梦松完成签到 ,获得积分10
9秒前
9秒前
9202211125完成签到,获得积分10
9秒前
10秒前
Kriemhild完成签到,获得积分10
10秒前
Miller完成签到,获得积分0
10秒前
为什么不学习完成签到,获得积分10
10秒前
10秒前
坚定龙猫完成签到,获得积分10
11秒前
11秒前
爱唱歌的yu仔完成签到,获得积分10
12秒前
lyy完成签到 ,获得积分10
12秒前
今天没有哭鸭完成签到,获得积分10
13秒前
壮观小鸭子完成签到 ,获得积分10
13秒前
13秒前
Xander完成签到,获得积分10
13秒前
和平星完成签到 ,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443