Exploring the potential of StyleGAN for modeling high-quality and diverse digital wood textures: Towards advancements in the wood industry

纹理(宇宙学) 计算机科学 纹理合成 人工智能 数字图像 像素 模式识别(心理学) 图像纹理 图像处理 图像(数学)
作者
Weihui Zhan,Zhen Yang,Hui Xu,Sitan Xue,Jinguo Lin,Xin Guan
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:209: 117880-117880
标识
DOI:10.1016/j.indcrop.2023.117880
摘要

Wood texture is pivotal in maximizing the value of trees and timber resources. Consequently, digital modeling and simulation of wood texture have become essential in wood science and industry. Therefore, researching simulation modeling techniques for digital wood texture has significant implications for advancing wood science and industry. This paper introduces a novel approach to modeling and simulating wood texture, focusing on the perspective of deep learning. The proposed method explored the viability of utilizing the StyleGAN model to generate digital wood texture. Fréchet Inception Distance(FID), visual Turing tests, and 1/f fluctuation spectrum analysis were used to evaluate the effectiveness of the digital wood texture models. Additionally, various control techniques were discussed for generating digital wood texture using StyleGAN models. The experimental results strongly indicated that the StyleGAN model exhibits robust capabilities in generating digital wood texture, as evidenced by an FID index of 13. Moreover, the visual Turing tests revealed that professional identification was similar to random guessing, while the fluctuation spectrum analysis demonstrated pixel distribution frequencies similar to those observed in real wood textures. Furthermore, in terms of controlling the simulation of digital wood texture, the StyleGAN model demonstrated remarkable abilities surpassing any previous models based on physical modeling. By fine-tuning truncation parameters and employing network layer mixing techniques, the model could generate the wood texture of various tree species, demonstrating outstanding generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niu完成签到,获得积分10
刚刚
不如一默发布了新的文献求助10
刚刚
xxxd发布了新的文献求助10
1秒前
Gorone发布了新的文献求助10
1秒前
伯劳完成签到 ,获得积分10
1秒前
华仔应助song采纳,获得10
2秒前
stuckinrain发布了新的文献求助10
2秒前
chyr发布了新的文献求助30
2秒前
灵巧的煎饼完成签到,获得积分10
2秒前
蓝天碧海小西服完成签到,获得积分0
2秒前
FashionBoy应助彪壮的小伙采纳,获得10
2秒前
2秒前
2秒前
3秒前
ZHIXIANGWENG发布了新的文献求助10
3秒前
情怀应助牛牛采纳,获得10
4秒前
共享精神应助壮观的沉鱼采纳,获得10
4秒前
5秒前
Zn应助毛哥看文献采纳,获得10
5秒前
LLL完成签到,获得积分10
6秒前
6秒前
OIIII发布了新的文献求助20
6秒前
简单点发布了新的文献求助10
7秒前
落后的小蕊完成签到,获得积分10
7秒前
7秒前
8秒前
阿月完成签到,获得积分10
8秒前
周少完成签到,获得积分10
9秒前
9秒前
思源应助火星上笑珊采纳,获得10
9秒前
10秒前
霸气魔镜发布了新的文献求助10
10秒前
10秒前
10秒前
英俊的铭应助LYL采纳,获得10
11秒前
杨洋完成签到,获得积分20
11秒前
12秒前
是风动发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126