人工神经网络
非线性系统
晶体管
过程(计算)
电子工程
非线性模型
计算机科学
生物系统
工程类
电压
电气工程
人工智能
物理
量子力学
生物
操作系统
作者
M. Tian,James Bell,Roberto Quaglia,Ehsan M. Azad,P.J. Tasker
出处
期刊:IEEE Transactions on Microwave Theory and Techniques
日期:2024-01-01
卷期号:: 1-15
标识
DOI:10.1109/tmtt.2024.3434959
摘要
This article introduces a novel Artificial Neural Network (ANN) structure magentadetermination process, based on the Cardiff Model (CM), to determine ANN-based transistor non-linear behavioral models.By relating the CM formulation and coefficients to the Taylor series expansion of the ANN model, a novel approach for determining the required values of a Fully Connected Cascaded (FCC) ANN structure has been formulated.The proposed method provides the chance to escape from the possible time-consuming ANN magentadetermination process.Experiments proved that the proposed ANN models using the magentadetermination method can provide accurate prediction for the behavior acquired from load-pull characterizations of a Wolfspeed 10 W packaged gallium nitride (GaN) High Electron Mobility Transistor (HEMT) simulation at 3.5 GHz, and a dense load-pull measurement of WIN NP12 4x75 um GaN HEMT at 20 GHz, with Normalized Mean Square Error (NMSE) levels lower than -40 dB.
科研通智能强力驱动
Strongly Powered by AbleSci AI