Long-tailed multi-domain generalization for fault diagnosis of rotating machinery under variable operating conditions

一般化 变量(数学) 断层(地质) 领域(数学分析) 计算机科学 人工智能 数学 地质学 数学分析 地震学
作者
Chuanxia Jian,Guopeng Mo,Yanhong Peng,Yinhui Ao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241256690
摘要

As the operating conditions (also known as domains) of rotating machinery become increasingly diverse, fault diagnosis has garnered growing attention. However, fault diagnosis frequently encounters challenges such as long-tailed data distributions, domain shifts in monitoring data, and the unavailability of target-domain data. Existing approaches can only address some of these challenges, limiting their applications. To address these challenges concurrently, we introduce a novel learning paradigm called long-tailed multi-domain generalized fault diagnosis (LMGFD) and propose a two-stage learning framework for LMGFD, comprising domain-invariant feature learning and balanced classifier learning. In the first stage, we leverage a balanced multi-order moment matching (BMMM) module to align subdomains with long-tailed distributions. Additionally, a balanced prototypical supervised contrastive (BPSC) module is developed to effectively alleviate the contrastive imbalance. The combination of BMMM and BPSC enables the effective learning of long-tailed domain-invariant features. In the second stage, we extend the focal loss to a multi-class version and re-weight it using effective sample numbers to strengthen tailed-class loss, thereby mitigating the overfitting problem. Experimental results on both a public dataset and a private dataset support the competitiveness and effectiveness of the proposed method. The findings suggest that we present a promising solution for fault diagnosis of rotating machinery under variable operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑小羿发布了新的文献求助20
2秒前
wangxuan发布了新的文献求助10
3秒前
3秒前
chili完成签到,获得积分10
3秒前
斯文败类应助Kyrie采纳,获得10
4秒前
5秒前
慕青应助嘎嘎嘎采纳,获得10
7秒前
TheWitness发布了新的文献求助10
7秒前
rr发布了新的文献求助10
8秒前
11秒前
情怀应助唐文硕采纳,获得10
11秒前
12秒前
12秒前
李健应助fighting采纳,获得10
13秒前
灼灼朗朗发布了新的文献求助10
13秒前
紧张的蜻蜓完成签到 ,获得积分10
14秒前
jujubemxw发布了新的文献求助10
14秒前
顾矜应助bvuiragybv采纳,获得10
14秒前
jl关闭了jl文献求助
14秒前
qing_he应助阳光的定帮采纳,获得10
15秒前
CodeCraft应助wu采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得30
16秒前
科目三应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
木子应助科研通管家采纳,获得20
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
wanci应助syy采纳,获得10
17秒前
zyfqpc应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
delta发布了新的文献求助10
17秒前
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
18秒前
Singularity举报jl求助涉嫌违规
18秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244