工具变量
分位数回归
阶段(地层学)
计量经济学
统计
回归分析
回归
横截面线性回归法
数学
贝叶斯多元线性回归
地质学
古生物学
作者
Javier Alejo,Antonio F. Galvao,Gabriel Montes‐Rojas
标识
DOI:10.1177/1536867x241257803
摘要
In this article, we develop a first-stage linear regression command, fsivqreg, for an instrumental-variables quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, that is, a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. An empirical application illustrates its implementation.
科研通智能强力驱动
Strongly Powered by AbleSci AI