Predicting Clinical Anticancer Drug Response of Patients by using Domain Alignment and Prototypical Learning

计算机科学 药物反应 药品 抗癌药 领域(数学分析) 人工智能 医学 药理学 数学 数学分析
作者
Wei Peng,Chuyue Chen,Wei Dai,Ning Yu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3462811
摘要

Anticancer drug response prediction is crucial in developing personalized treatment plans for cancer patients. However, High-quality patient anticancer drug response data are scarce and cell line data and patient data have different distributions, models trained solely on cell line data perform poorly. Some existing methods predict anticancer drug response by transferring knowledge from the cell line domain to the patient domain using transfer learning. However, the robustness of these classifiers is affected by anomalies in the cell line data, and they do not utilize the knowledge in the unlabeled target domain data. To this end, we proposed a model called DAPL to predict patient responses to anticancer drugs. The model extracts domain-invariant features from cell lines and patients by constructing multiple VAEs and extracts drug features using GNNs. These features are then combined for prototypical learning to train a classifier, resulting in better predictions of patient anticancer drug response. We used the cell line datasets CCLE and GDSC as source domains and the patient datasets TCGA and PDTC as target domains and conducted experiments. The results indicate that DAPL shows excellent performance in predicting patient anticancer drug response compared to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fwi小白完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
gao发布了新的文献求助20
3秒前
3秒前
youwenjing11完成签到 ,获得积分10
4秒前
diipgzfh发布了新的文献求助10
4秒前
小沫完成签到,获得积分10
6秒前
Claudplz发布了新的文献求助10
6秒前
科研通AI2S应助jyy采纳,获得10
7秒前
星辰大海应助jyy采纳,获得10
7秒前
flower6991完成签到,获得积分10
7秒前
努力且不优秀完成签到,获得积分10
7秒前
拼搏的忆寒完成签到,获得积分10
7秒前
zpz完成签到,获得积分10
9秒前
9秒前
木木完成签到,获得积分10
9秒前
9秒前
SciGPT应助lz采纳,获得10
10秒前
10秒前
善学以致用应助虚幻又莲采纳,获得10
11秒前
科研通AI2S应助认真的忆文采纳,获得10
11秒前
jihenyouai0213完成签到,获得积分10
11秒前
FashionBoy应助烂漫的汲采纳,获得10
12秒前
13秒前
15秒前
fang完成签到,获得积分10
16秒前
16秒前
lvjiahui发布了新的文献求助10
16秒前
ww完成签到,获得积分10
17秒前
17秒前
阿槿发布了新的文献求助10
20秒前
20秒前
Endlessway应助gao采纳,获得20
20秒前
虚幻又莲完成签到,获得积分10
20秒前
刘佳美发布了新的文献求助10
21秒前
21秒前
万能图书馆应助中和皇极采纳,获得10
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221340
求助须知:如何正确求助?哪些是违规求助? 2870099
关于积分的说明 8168990
捐赠科研通 2536895
什么是DOI,文献DOI怎么找? 1369109
科研通“疑难数据库(出版商)”最低求助积分说明 645367
邀请新用户注册赠送积分活动 619036