Homomorphic Encryption and Collaborative Machine Learning for Secure Healthcare Analytics

同态加密 计算机科学 医疗保健 加密 分析 计算机安全 数据科学 人工智能 政治学 法学
作者
B. Gandhi,Shruti B. Vaghadia,Malaram Kumhar,Rajesh Gupta,Nilesh Kumar Jadav,Jitendra Bhatia,Sudeep Tanwar,Abdulatif Alabdulatif
出处
期刊:Security and privacy [Wiley]
标识
DOI:10.1002/spy2.460
摘要

ABSTRACT With the advent of the Internet of Things (IoT), the conventional healthcare system has evolved into a smart healthcare system, offering intelligent prognosis and diagnosis services. However, as the healthcare sector embraces technological advances, concerns about the privacy and security of critical patient data have become more prevalent. Due to adversarial attacks on traditional machine learning (ML), the security of these intelligent systems is increasingly at risk. Collaborative machine learning (CML) and homomorphic encryption (HE) have recently become viable approaches to circumvent the security challenges of healthcare systems. Inspired by the staggering benefits of CML and HE, this research article examines different cryptographic techniques that enable computations on encrypted data while delving into the fundamental ideas of HE. Simultaneously, it explores various frameworks for CML and highlights their potential for decentralized model training. The paper also critically analyses the benefits and challenges of integrating HE with CML, offering insights into safe model aggregation, guaranteeing data privacy, and performance optimization techniques for use in healthcare environments. Further, we delved into pragmatic scenarios and actual implementations, illustrating how the unified framework can improve diagnosis and cooperative research in smart healthcare systems. Lastly, we presented a case study that evaluates different ML algorithms, such as k‐nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and logistic regression (LR), to secure healthcare analytics. The results show that KNN had the best accuracy of 76.5%, with RF and SVM having an accuracy of 76%. The accuracy for LR is 73.5%, which is lower than all other models. These findings offer insightful information for selecting models that take accuracy and the trade‐off between precision, recall, and F1 score into account. This helps researchers make well‐informed selections for their classification work in securing healthcare analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆发布了新的文献求助10
1秒前
勤劳的皮皮虾完成签到,获得积分10
1秒前
WHB发布了新的文献求助10
1秒前
愤怒的之玉完成签到 ,获得积分10
1秒前
丫头完成签到,获得积分10
1秒前
不想看文献完成签到 ,获得积分10
1秒前
2秒前
杨知意发布了新的文献求助50
2秒前
2秒前
aaaaa发布了新的文献求助10
3秒前
XY完成签到 ,获得积分10
3秒前
3秒前
mi完成签到,获得积分10
3秒前
3秒前
彭于晏应助然然采纳,获得10
4秒前
江蓠完成签到,获得积分10
4秒前
耍酷以柳完成签到,获得积分20
4秒前
身法马可波罗完成签到 ,获得积分10
5秒前
5秒前
6秒前
hyjcnhyj完成签到,获得积分10
7秒前
kaww发布了新的文献求助10
7秒前
tyzhet完成签到,获得积分10
7秒前
李李李发布了新的文献求助10
7秒前
8秒前
9秒前
巴啦啦能量完成签到,获得积分10
9秒前
彪壮的绮烟完成签到,获得积分10
9秒前
QIAO完成签到 ,获得积分10
10秒前
Air云完成签到,获得积分10
10秒前
科研通AI2S应助1900th采纳,获得30
10秒前
李健的粉丝团团长应助kaww采纳,获得30
12秒前
三十三完成签到,获得积分10
12秒前
科研通AI2S应助可可可采纳,获得10
13秒前
14秒前
桐桐应助狠毒的小龙虾采纳,获得10
15秒前
16秒前
東東完成签到,获得积分10
16秒前
17秒前
kaww完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012