Homomorphic Encryption and Collaborative Machine Learning for Secure Healthcare Analytics

同态加密 计算机科学 医疗保健 加密 分析 计算机安全 数据科学 人工智能 政治学 法学
作者
B. Gandhi,Shruti B. Vaghadia,Malaram Kumhar,Rajesh Gupta,Nilesh Kumar Jadav,Jitendra Bhatia,Sudeep Tanwar,Abdulatif Alabdulatif
出处
期刊:Security and privacy [Wiley]
标识
DOI:10.1002/spy2.460
摘要

ABSTRACT With the advent of the Internet of Things (IoT), the conventional healthcare system has evolved into a smart healthcare system, offering intelligent prognosis and diagnosis services. However, as the healthcare sector embraces technological advances, concerns about the privacy and security of critical patient data have become more prevalent. Due to adversarial attacks on traditional machine learning (ML), the security of these intelligent systems is increasingly at risk. Collaborative machine learning (CML) and homomorphic encryption (HE) have recently become viable approaches to circumvent the security challenges of healthcare systems. Inspired by the staggering benefits of CML and HE, this research article examines different cryptographic techniques that enable computations on encrypted data while delving into the fundamental ideas of HE. Simultaneously, it explores various frameworks for CML and highlights their potential for decentralized model training. The paper also critically analyses the benefits and challenges of integrating HE with CML, offering insights into safe model aggregation, guaranteeing data privacy, and performance optimization techniques for use in healthcare environments. Further, we delved into pragmatic scenarios and actual implementations, illustrating how the unified framework can improve diagnosis and cooperative research in smart healthcare systems. Lastly, we presented a case study that evaluates different ML algorithms, such as k‐nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and logistic regression (LR), to secure healthcare analytics. The results show that KNN had the best accuracy of 76.5%, with RF and SVM having an accuracy of 76%. The accuracy for LR is 73.5%, which is lower than all other models. These findings offer insightful information for selecting models that take accuracy and the trade‐off between precision, recall, and F1 score into account. This helps researchers make well‐informed selections for their classification work in securing healthcare analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_pnxBe8完成签到,获得积分10
刚刚
自然紫山完成签到,获得积分10
1秒前
sssss完成签到,获得积分10
1秒前
1秒前
康嘉伟完成签到,获得积分10
1秒前
科目三应助奋斗的凡采纳,获得10
1秒前
Dali应助xr采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
赫三问完成签到,获得积分10
3秒前
冷静完成签到,获得积分10
3秒前
ding应助rui采纳,获得10
3秒前
所所应助刘睿颖采纳,获得10
4秒前
pan发布了新的文献求助10
4秒前
4秒前
4秒前
小碎步发布了新的文献求助10
4秒前
活力的静曼完成签到,获得积分10
5秒前
烟花应助小马的可爱老婆采纳,获得10
5秒前
Aki_27完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
领导范儿应助Luhh采纳,获得10
6秒前
难过以亦完成签到 ,获得积分10
6秒前
tiezhu发布了新的文献求助10
6秒前
lcy完成签到,获得积分10
6秒前
JamesPei应助li采纳,获得10
6秒前
Schmidt完成签到,获得积分10
6秒前
Tobeyleonard发布了新的文献求助10
7秒前
功夫熊猫发布了新的文献求助10
7秒前
7秒前
飘逸访蕊完成签到,获得积分20
7秒前
yang发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
小二郎应助XX采纳,获得10
8秒前
qhdsyxy完成签到 ,获得积分0
8秒前
duanqianqian完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997