Homomorphic Encryption and Collaborative Machine Learning for Secure Healthcare Analytics

同态加密 计算机科学 医疗保健 加密 分析 计算机安全 数据科学 人工智能 政治学 法学
作者
B. Gandhi,Shruti B. Vaghadia,Malaram Kumhar,Rajesh Gupta,Nilesh Kumar Jadav,Jitendra Bhatia,Sudeep Tanwar,Abdulatif Alabdulatif
出处
期刊:Security and privacy [Wiley]
标识
DOI:10.1002/spy2.460
摘要

ABSTRACT With the advent of the Internet of Things (IoT), the conventional healthcare system has evolved into a smart healthcare system, offering intelligent prognosis and diagnosis services. However, as the healthcare sector embraces technological advances, concerns about the privacy and security of critical patient data have become more prevalent. Due to adversarial attacks on traditional machine learning (ML), the security of these intelligent systems is increasingly at risk. Collaborative machine learning (CML) and homomorphic encryption (HE) have recently become viable approaches to circumvent the security challenges of healthcare systems. Inspired by the staggering benefits of CML and HE, this research article examines different cryptographic techniques that enable computations on encrypted data while delving into the fundamental ideas of HE. Simultaneously, it explores various frameworks for CML and highlights their potential for decentralized model training. The paper also critically analyses the benefits and challenges of integrating HE with CML, offering insights into safe model aggregation, guaranteeing data privacy, and performance optimization techniques for use in healthcare environments. Further, we delved into pragmatic scenarios and actual implementations, illustrating how the unified framework can improve diagnosis and cooperative research in smart healthcare systems. Lastly, we presented a case study that evaluates different ML algorithms, such as k‐nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and logistic regression (LR), to secure healthcare analytics. The results show that KNN had the best accuracy of 76.5%, with RF and SVM having an accuracy of 76%. The accuracy for LR is 73.5%, which is lower than all other models. These findings offer insightful information for selecting models that take accuracy and the trade‐off between precision, recall, and F1 score into account. This helps researchers make well‐informed selections for their classification work in securing healthcare analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼nic克完成签到 ,获得积分10
刚刚
热心的诗蕊完成签到,获得积分10
刚刚
biov完成签到,获得积分10
刚刚
酸奶七完成签到,获得积分10
1秒前
1秒前
魔法披风完成签到,获得积分10
2秒前
郭志倩完成签到 ,获得积分10
2秒前
极速小鱼完成签到 ,获得积分20
2秒前
jameslee04完成签到 ,获得积分10
2秒前
曾开心发布了新的文献求助30
2秒前
3秒前
陈腿毛完成签到,获得积分10
3秒前
3秒前
3秒前
鳗鱼不尤完成签到,获得积分10
3秒前
Lenacici完成签到,获得积分10
3秒前
QQ发布了新的文献求助10
3秒前
闹心完成签到,获得积分10
4秒前
研友_LBKR9n完成签到,获得积分10
4秒前
可乐加糖发布了新的文献求助10
4秒前
东原角完成签到,获得积分10
5秒前
Nobody发布了新的文献求助10
5秒前
涨知识完成签到 ,获得积分10
5秒前
5秒前
五花膘完成签到 ,获得积分10
6秒前
情怀应助xiaxia采纳,获得10
7秒前
Youdge发布了新的文献求助10
8秒前
JSzzZ完成签到,获得积分10
8秒前
YOLO完成签到,获得积分10
8秒前
外向的芒果完成签到 ,获得积分10
9秒前
啵啵啵小太阳完成签到,获得积分10
9秒前
9秒前
知否完成签到 ,获得积分0
9秒前
MQQ完成签到 ,获得积分10
9秒前
ezio发布了新的文献求助30
9秒前
桃博完成签到,获得积分10
9秒前
务实静槐完成签到,获得积分10
9秒前
尼古丁的味道完成签到 ,获得积分10
10秒前
10秒前
Nobody完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259