Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time

分配系数 化学 分析物 色谱法 辛醇 保留时间 分布(数学) 分拆(数论) 分析化学(期刊) 数学 数学分析 组合数学
作者
Zaw-Myo Win,Allen M. Y. Cheong,W. Scott Hopkins
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (7): 1906-1913 被引量:11
标识
DOI:10.1021/acs.jcim.2c01373
摘要

During preclinical evaluations of drug candidates, several physicochemical (p-chem) properties are measured and employed as metrics to estimate drug efficacy in vivo. Two such p-chem properties are the octanol-water partition coefficient, Log P, and distribution coefficient, Log D, which are useful in estimating the distribution of drugs within the body. Log P and Log D are traditionally measured using the shake-flask method and high-performance liquid chromatography. However, it is challenging to measure these properties for species that are very hydrophobic (or hydrophilic) owing to the very low equilibrium concentrations partitioned into octanol (or aqueous) phases. Moreover, the shake-flask method is relatively time-consuming and can require multistep dilutions as the range of analyte concentrations can differ by several orders of magnitude. Here, we circumvent these limitations by using machine learning (ML) to correlate Log P and Log D with liquid chromatography (LC) retention time (RT). Predictive models based on four ML algorithms, which used molecular descriptors and LC RTs as features, were extensively tested and compared. The inclusion of RT as an additional descriptor improves model performance (MAE = 0.366 and R2 = 0.89), and Shapley additive explanations analysis indicates that RT has the highest impact on model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助李幺幺采纳,获得10
1秒前
lai完成签到,获得积分10
1秒前
宋温暖应助44采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
李健应助15348547697采纳,获得10
3秒前
诚心盼海发布了新的文献求助10
3秒前
yang123完成签到,获得积分20
3秒前
稳重电话完成签到,获得积分10
3秒前
3秒前
4秒前
高贵谷芹完成签到,获得积分10
4秒前
科研通AI6应助小羊羔采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
6秒前
maomao201026发布了新的文献求助10
6秒前
yan123完成签到,获得积分10
6秒前
共享精神应助chai采纳,获得10
6秒前
Apricity应助wuxunxun2015采纳,获得10
6秒前
6秒前
tina完成签到,获得积分10
7秒前
科研顺利发布了新的文献求助10
8秒前
yang123发布了新的文献求助10
8秒前
9秒前
zzz发布了新的文献求助10
9秒前
熊猫发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
10秒前
10秒前
琳67发布了新的文献求助10
10秒前
cult发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592