Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time

分配系数 化学 分析物 色谱法 辛醇 保留时间 分布(数学) 分拆(数论) 分析化学(期刊) 数学 组合数学 数学分析
作者
Zaw-Myo Win,Allen M. Y. Cheong,W. Scott Hopkins
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (7): 1906-1913 被引量:11
标识
DOI:10.1021/acs.jcim.2c01373
摘要

During preclinical evaluations of drug candidates, several physicochemical (p-chem) properties are measured and employed as metrics to estimate drug efficacy in vivo. Two such p-chem properties are the octanol-water partition coefficient, Log P, and distribution coefficient, Log D, which are useful in estimating the distribution of drugs within the body. Log P and Log D are traditionally measured using the shake-flask method and high-performance liquid chromatography. However, it is challenging to measure these properties for species that are very hydrophobic (or hydrophilic) owing to the very low equilibrium concentrations partitioned into octanol (or aqueous) phases. Moreover, the shake-flask method is relatively time-consuming and can require multistep dilutions as the range of analyte concentrations can differ by several orders of magnitude. Here, we circumvent these limitations by using machine learning (ML) to correlate Log P and Log D with liquid chromatography (LC) retention time (RT). Predictive models based on four ML algorithms, which used molecular descriptors and LC RTs as features, were extensively tested and compared. The inclusion of RT as an additional descriptor improves model performance (MAE = 0.366 and R2 = 0.89), and Shapley additive explanations analysis indicates that RT has the highest impact on model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想抱发布了新的文献求助10
刚刚
Gdhdjxbbx发布了新的文献求助10
1秒前
Lucas应助笨薯泥采纳,获得10
1秒前
时舒发布了新的文献求助10
2秒前
李朋发布了新的文献求助10
3秒前
英俊的铭应助EED采纳,获得10
3秒前
不敢装睡发布了新的文献求助30
4秒前
炸毛娟发布了新的文献求助10
4秒前
4秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
华仔应助zhang采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得30
5秒前
无花果应助科研通管家采纳,获得10
5秒前
李健应助童话采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
6秒前
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
6秒前
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
11完成签到,获得积分20
6秒前
可靠的0发布了新的文献求助10
7秒前
LDD完成签到,获得积分10
8秒前
猪猪hero应助洋洋采纳,获得10
9秒前
eui完成签到,获得积分10
9秒前
9秒前
10秒前
想抱发布了新的文献求助10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496