Identification of central symptoms of children depression and development of two short version of Children's Depression Inventory: Based on network analysis and machine learning

萧条(经济学) 孤独 悲伤 切断 心理学 儿童抑郁症 精神科 临床心理学 焦虑 愤怒 物理 量子力学 经济 宏观经济学
作者
Chao Zhang,Baojuan Ye,Guo Zhi-fang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:346: 242-251
标识
DOI:10.1016/j.jad.2023.10.146
摘要

Using network analysis to study the central symptoms is important for understanding the mechanism of depression symptoms and selecting items for the short version depression screening scale. This study aimed to identify the central symptoms of depression and develop the short and effective depression screening tools for Chinese rural children. Firstly, the 2458 individuals (Mage = 10.74; SDage = 1.64; 51.2 % were female) were recruited from the rural children's mental health database. Children's Depression Inventory (CDI) was used to assess depression symptoms. Then, network analysis was used to identify the central symptoms of depression. The accuracy, stability, and gender invariance of the depression symptoms network were tested. Finally, a short version of CDI with central symptoms (CDI-SC) and a new CDI-10 (CDI-10-N) were developed by network analysis and feature selection techniques to optimize the existing CDI-10. Their performances in screening depression symptoms were validated by the cutoff threshold and machine learning. The central symptoms of Chinese rural children's depression were sadness, self-hatred, loneliness and self-deprecation. This result was accurate and stable and depression symptoms network has gender invariance. The AUC values of CDI-10-N and CDI-SC are over 0.9. The CDI-10-N has a higher AUC than CDI-10. The optimal cutoff thresholds for CDI-10-N and CDI-SC are 6 and 1. The performance of machine learning on AUC generally outperforms those of cutoff threshold. The central symptoms identified in this study should be highlighted in screening depression symptoms, and CDI-10-N and CDI-SC are effective tools for screening depression symptoms in Chinese rural children.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早睡早起完成签到,获得积分10
1秒前
wsatm发布了新的文献求助10
1秒前
陈哈哈完成签到 ,获得积分0
1秒前
芥末发布了新的文献求助10
2秒前
yuchen完成签到,获得积分10
3秒前
路过蜻蜓完成签到,获得积分10
3秒前
搜集达人应助xiaozheng采纳,获得10
3秒前
gzsy发布了新的文献求助10
3秒前
windcreator完成签到,获得积分10
3秒前
彭于彦祖应助高丽娜采纳,获得30
3秒前
4秒前
彭于晏应助秋秋采纳,获得10
4秒前
Xue完成签到,获得积分10
4秒前
阳光完成签到,获得积分10
4秒前
炙热的夜雪完成签到 ,获得积分10
5秒前
科研通AI2S应助Gser采纳,获得10
5秒前
繁荣的向秋完成签到,获得积分10
5秒前
ys1111完成签到 ,获得积分10
5秒前
哎呀我去发布了新的文献求助10
5秒前
Gxy完成签到,获得积分10
5秒前
感动冰姬完成签到,获得积分10
6秒前
兜兜应助菠萝菠萝采纳,获得10
6秒前
雪白的面包完成签到 ,获得积分10
6秒前
6秒前
QIAO发布了新的文献求助10
6秒前
彭诗滢完成签到,获得积分10
7秒前
tizi完成签到,获得积分10
7秒前
sgpp完成签到 ,获得积分10
8秒前
旅行的小七仔完成签到,获得积分10
8秒前
8秒前
xq完成签到,获得积分10
8秒前
丘先生完成签到,获得积分20
8秒前
btsforever完成签到 ,获得积分10
9秒前
gzsy完成签到,获得积分10
9秒前
10秒前
碳酸芙兰发布了新的文献求助10
10秒前
yrm发布了新的文献求助10
10秒前
xiaozhang完成签到 ,获得积分10
11秒前
灵零完成签到,获得积分10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151113
求助须知:如何正确求助?哪些是违规求助? 2802591
关于积分的说明 7848835
捐赠科研通 2459966
什么是DOI,文献DOI怎么找? 1309420
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757