Investigation of the Particle Formation Mechanism during Coprecipitation of Ni-Rich Hydroxide Precursor for Li-Ion Cathode Active Material

共沉淀 结块 粒子(生态学) 粒径 化学工程 煅烧 球形 相(物质) 化学 材料科学 离子 矿物学 无机化学 复合材料 催化作用 有机化学 海洋学 地质学 工程类
作者
Rafael Benjamin Berk,Thorsten Beierling,Lukas Metzger,Hubert A. Gasteiger
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:170 (11): 110513-110513 被引量:4
标识
DOI:10.1149/1945-7111/ad050b
摘要

Industrial production of cathode active material (CAM) for lithium-ion batteries is conducted by coprecipitation of a hydroxide (Ni x Co y Mn z (OH) 2 ) precursor (referred to as pCAM) in a stirred tank reactor and subsequent high-temperature calcination of the pCAM with a lithium compound. The physical properties of the resulting CAM are significantly affected by the associated pCAM utilized for synthesis. For an economical manufacturing of pCAM and CAM, the pCAM particle size and sphericity during the coprecipitation reaction must be precisely controlled, requiring an in-depth understanding of the Ni x Co y Mn z (OH) 2 particle formation mechanism. Therefore, the development of the secondary particle size and morphology throughout the semi-batch coprecipitation of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 at various stirring speeds was monitored by light scattering and SEM imaging, respectively. A two-stage particle formation mechanism was identified: In the initial seeding phase, irregular-shaped secondary particles agglomerates are formed, which in the subsequent growth phase linearly increase in size with the third root of time, governed by the growth of individual primary particles. Thereby, the degree of turbulence governs the initial agglomerate size and number formed during seeding, which dictates the growth rate and the secondary particle sphericity. Finally, the proposed particle formation mechanism is compared to mechanisms prevailing in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到 ,获得积分10
刚刚
不配.应助诸觅翠采纳,获得10
刚刚
1秒前
2秒前
慕青应助冯丽雪采纳,获得10
2秒前
快乐滑板应助tgh采纳,获得10
3秒前
共享精神应助tutu采纳,获得10
3秒前
younglsc2发布了新的文献求助10
4秒前
杭浩然完成签到,获得积分10
4秒前
8秒前
9秒前
拥你入怀完成签到,获得积分10
10秒前
Singularity应助含蓄妖丽采纳,获得10
10秒前
11秒前
哈哈发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
tutu发布了新的文献求助10
16秒前
18秒前
XiaoO发布了新的文献求助10
18秒前
ma完成签到,获得积分10
19秒前
科研通AI2S应助强健的妙菱采纳,获得30
21秒前
22秒前
22秒前
WELXCNK发布了新的文献求助10
23秒前
丰富芷荷发布了新的文献求助10
26秒前
NancyDee完成签到,获得积分10
27秒前
tutu完成签到,获得积分20
27秒前
28秒前
赘婿应助LZJ采纳,获得10
29秒前
小Fan展开完成签到,获得积分10
29秒前
流年完成签到,获得积分10
30秒前
30秒前
彪壮的小玉完成签到,获得积分10
32秒前
LAN发布了新的文献求助10
32秒前
Cloud应助zz采纳,获得20
34秒前
34秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796565
关于积分的说明 7820588
捐赠科研通 2452958
什么是DOI,文献DOI怎么找? 1305288
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464