Enhancing groundwater level prediction accuracy at a daily scale through combined machine learning and physics-based modeling

滞后 地下水 比例(比率) 降水 计算机科学 人工智能 地下水资源 机器学习 气象学 地质学 物理 计算机网络 量子力学 含水层 岩土工程
作者
Kangning Sun,Litang Hu,Jianyu Sun,Xiaoyuan Cao
出处
期刊:Journal of Hydrology: Regional Studies [Elsevier]
卷期号:50: 101577-101577
标识
DOI:10.1016/j.ejrh.2023.101577
摘要

Yongding River alluvial proluvial fan, a part of North China Plain with intense groundwater withdrawals. The objective of this study is to enhance the accuracy of groundwater level (GWL) prediction at a daily scale by combining short-term memory (LSTM) and physics-based (PB) models. Two types of LSTM models were developed: LSTM-H-ORI, which predicts GWL, and LSTM-dH-ORI, which predicts simulated errors of the PB model. These models were subsequently refined into LSTM-H-IMP and LSTM-dH-IMP by incorporating the outputs from the PB model. To investigate the influence of groundwater flow processes, LSTM-H-IMP was further enhanced by considering the time lag properties of precipitation, referred to as LSTM-H-IMP-LAG. Significant improvements were found for LSTM-H-IMP when the performance of LSTM-H-ORI was poor (Nash–Sutcliffe Efficiency Coefficient, NSE<0) or the performance of PB model was not bad (NSE≥0). And the prediction accuracy was improved for over 67% of wells in this case. When the performance of PB model was medium and poor (NSE≤0.6), the improvement of LSTM-dH-IMP was more effective, leading to a prediction accuracy enhancement for over 77% of wells. Additionally, LSTM-H-IMP-LAG exhibited further improvement, with an average NSE increase of 0.1. This study provides scientific methods for accurate prediction of GWL at a daily time scale and the combined application of LSTM and PB models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助sunoopp采纳,获得10
1秒前
2秒前
夜已深发布了新的文献求助10
2秒前
2秒前
Owen应助海孩子采纳,获得10
2秒前
3秒前
4秒前
小蘑菇应助marchon采纳,获得10
4秒前
amber发布了新的文献求助10
5秒前
5秒前
所所应助三千弱水为君饮采纳,获得10
5秒前
Gergeo应助小付老丝儿采纳,获得20
6秒前
Owen应助研友_闾丘枫采纳,获得10
6秒前
Maize Man完成签到,获得积分10
6秒前
eilis完成签到,获得积分10
8秒前
fsylld233完成签到,获得积分10
8秒前
8秒前
9秒前
田様应助陈荣采纳,获得10
9秒前
领导范儿应助鸭鸭采纳,获得10
9秒前
Demons发布了新的文献求助10
9秒前
真烦人发布了新的文献求助10
9秒前
传奇3应助Dester采纳,获得10
10秒前
10秒前
冷絮应助gloria采纳,获得10
10秒前
ranqi发布了新的文献求助10
11秒前
ding应助amber采纳,获得10
12秒前
夜已深完成签到,获得积分10
13秒前
tRNA发布了新的文献求助10
13秒前
搜集达人应助勤奋映之采纳,获得10
14秒前
王小五完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
17秒前
17秒前
QY发布了新的文献求助10
18秒前
20秒前
依萱完成签到,获得积分10
20秒前
21秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3094678
求助须知:如何正确求助?哪些是违规求助? 2746470
关于积分的说明 7590539
捐赠科研通 2397890
什么是DOI,文献DOI怎么找? 1272222
科研通“疑难数据库(出版商)”最低求助积分说明 615340
版权声明 598860