Translation of Machine Learning-Based Prediction Algorithms to Personalised Empiric Antibiotic Selection: A Population-Based Cohort Study

医学 头孢吡肟 内科学 舒巴坦钠 氨苄西林 亚胺培南 哌拉西林 他唑巴坦 接收机工作特性 逻辑回归 人口 算法 抗生素 抗生素耐药性 生物 微生物学 数学 遗传学 细菌 铜绿假单胞菌 环境卫生
作者
Chungsoo Kim,Young Hwa Choi,Jung Yoon Choi,Hee Jung Choi,Rae Woong Park,Sandy Jeong Rhie
出处
期刊:International Journal of Antimicrobial Agents [Elsevier]
卷期号:62 (5): 106966-106966 被引量:2
标识
DOI:10.1016/j.ijantimicag.2023.106966
摘要

Prediction of antibiotic non-susceptibility based on patient characteristics and clinical status may support selection of empiric antibiotics for suspected hospital-acquired urinary tract infections (HA-UTIs). Prediction models were developed to predict non-susceptible results of eight antibiotic susceptibility tests ordered for suspected HA-UTI. Eligible patients were those with urine culture and susceptibility test results after 48 hours of admission between 2010–2021. Patient demographics, diagnosis, prescriptions, exposure to multidrug-resistant organisms, transfer history, and a daily calculated antibiogram were used as predictors. Lasso logistic regression (LLR), extreme gradient boosting (XGB), random forest, and stacked ensemble methods were used for development. Parsimonious models were also developed for clinical utility. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). In 10 474 suspected HA-UTI cases, the mean age was 62.1 ± 16.2 years and 48.1% were male. Non-susceptibility prediction for ampicillin/sulbactam, cefepime, ciprofloxacin, imipenem, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole performed best using the stacked ensemble (AUROC 76.9, 76.1, 77.0, 80.6, 76.1, and 76.5, respectively). The model for ampicillin performed best with LLR (AUROC 73.4). Extreme gradient boosting only performed best for gentamicin (AUROC 66.9). In the parsimonious models, the LLR yielded the highest AUROC for ampicillin, ampicillin/sulbactam, cefepime, gentamicin, and trimethoprim/sulfamethoxazole (AUROC 70.6, 71.8, 73.0, 65.9, and 73.0, respectively). The model for ciprofloxacin performed best with XGB (AUROC 70.3), while the model for imipenem performed best in the stacked ensemble (AUROC 71.3). A personalised application using the parsimonious models was publicly released. Prediction models for antibiotic non-susceptibility were developed to support empiric antibiotic selection for HA-UTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊撒网大大e完成签到,获得积分10
2秒前
大个应助jj采纳,获得10
2秒前
hour完成签到 ,获得积分10
4秒前
逝水完成签到 ,获得积分10
7秒前
坚定迎天完成签到,获得积分10
9秒前
9秒前
华仔完成签到,获得积分10
9秒前
9秒前
小小柴完成签到,获得积分10
10秒前
10秒前
安静的小蚂蚁完成签到,获得积分10
10秒前
微光完成签到,获得积分10
13秒前
生锈的铁片完成签到,获得积分10
13秒前
14秒前
14秒前
jzd1991发布了新的文献求助10
14秒前
wanci应助德德采纳,获得10
15秒前
大个应助123采纳,获得10
15秒前
fifteen发布了新的文献求助10
16秒前
17秒前
微光发布了新的文献求助10
18秒前
zhz完成签到,获得积分10
19秒前
斯文败类应助杰森斯坦虎采纳,获得10
20秒前
王柯发布了新的文献求助10
21秒前
223311完成签到,获得积分10
23秒前
blind发布了新的文献求助10
23秒前
酷波er应助激昂的飞松采纳,获得10
25秒前
王睿发布了新的文献求助10
25秒前
背后新之完成签到,获得积分10
26秒前
a_hu完成签到,获得积分10
28秒前
29秒前
30秒前
30秒前
诚心傲之完成签到,获得积分10
32秒前
安寒发布了新的文献求助10
32秒前
33秒前
33秒前
思南欧完成签到,获得积分10
33秒前
晴云发布了新的文献求助10
34秒前
henry发布了新的文献求助10
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187