Deep Learning Reconstruction for Single Pixel Imaging with Generative Adversarial Networks

鉴别器 计算机科学 人工智能 像素 深度学习 迭代重建 生成对抗网络 模式识别(心理学) 图像分辨率 灵敏度(控制系统) 计算机视觉 探测器 电信 电子工程 工程类
作者
Baturalp Güven,Alper Güngör,M. Umut Bahçeci,Tolga Çukur
标识
DOI:10.1109/icip49359.2023.10223149
摘要

Single pixel imaging (SPI) enables high-resolution imaging through multiple coded measurements based on low-resolution snapshots. An inverse problem can then be solved to reconstruct a high-resolution image given the coded measurements. There has been recent interest in adoption of deep neural networks in SPI reconstruction. However, existing methods are commonly trained with pixel-wise loss terms such as the ℓ 1 -norm loss, which can result in spatial blurring and poor sensitivity to structural details. In this study, we propose a novel approach for deep SPI reconstruction based on an unrolled conditional generative adversarial network (cGAN) model. The generator estimates the high-resolution image using coded low-resolution measurements by iterating across a cascade of denoising and data-consistency modules. Meanwhile, the discriminator distinguishes real versus synthesized high-resolution images. The architecture is trained end-to-end via a combined pixel-wise and adversarial loss to enhance sensitivity to structural details. The proposed method is demonstrated against existing SPI reconstruction methods, and ablation studies are performed to demonstrate the individual model components. The proposed method outperforms competing methods in terms of both quantitative metrics and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
hyominhsu完成签到,获得积分10
刚刚
852应助笑点低的碧琴采纳,获得10
刚刚
1秒前
嘿哈发布了新的文献求助10
1秒前
可爱的函函应助zhangsiyao采纳,获得10
2秒前
2秒前
2秒前
木木发布了新的文献求助10
3秒前
DVDDVD不反对完成签到,获得积分10
3秒前
111完成签到,获得积分10
4秒前
栀暖棠深发布了新的文献求助10
4秒前
科研通AI5应助贾翔采纳,获得10
4秒前
5秒前
科研通AI5应助徐昊雯采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
Highsea完成签到,获得积分10
6秒前
夏侯幻梦完成签到 ,获得积分10
6秒前
6秒前
6秒前
zzz完成签到 ,获得积分10
7秒前
赘婿应助YJ888采纳,获得10
7秒前
yyyhhh发布了新的文献求助10
8秒前
活泼又晴发布了新的文献求助10
8秒前
太阳当空照完成签到,获得积分10
8秒前
王怡发布了新的文献求助10
8秒前
9秒前
Jasper应助猹尔斯采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
半废人完成签到,获得积分10
11秒前
bkagyin应助自信璎采纳,获得10
11秒前
11秒前
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709