Origin of Excellent Charge Storage Properties of Defective Tin Disulphide in Magnesium/Lithium-Ion Hybrid Batteries

材料科学 锂(药物) 电荷(物理) 离子 无机化学 冶金 化学 物理 有机化学 内分泌学 量子力学 医学
作者
Xin Fan,Mike Tebyetekerwa,Yilan Wu,Rohit Ranganathan Gaddam,Xin Zhao
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:14 (1) 被引量:18
标识
DOI:10.1007/s40820-022-00914-5
摘要

Lithium-ion batteries (LIBs) are excellent electrochemical energy sources, albeit with existing challenges, including high costs and safety concerns. Magnesium-ion batteries (MIBs) are one of the potential alternatives. However, the performance of MIBs is poor due to their sluggish solid-state Mg2+ diffusion kinetics and severe electrode polarizability. Rechargeable magnesium-ion/lithium-ion (Mg2+/Li+) hybrid batteries (MLHBs) with Mg2+ and Li+ as the charge carriers create a synergy between LIBs and MIBs with significantly improved charge transport kinetics and reliable safety features. However, MLHBs are yet to reach a reasonable electrochemical performance as expected. This work reports a composite electrode material with highly defective two-dimensional (2D) tin sulphide nanosheets (SnSx) encapsulated in three-dimensional (3D) holey graphene foams (HGF) (SnSx/HGF), which exhibits a specific capacity as high as 600 mAh g-1 at 50 mA g-1 and a compelling specific energy density of ~ 330 Wh kg-1. The excellent electrochemical performance surpasses previously reported hybrid battery systems based on intercalation-type cathode materials under comparable conditions. The role played by the defects in the SnSx/HGF composite is studied to understand the origin of the observed excellent electrochemical performance. It is found that it is closely related to the defect structure in SnSx, which offers percolation pathways for efficient ion transport and increased internal surface area assessable to the charge carriers. The defective sites also absorb structural stress caused by Mg2+ and Li+ insertion. This work is an important step towards realizing high-capacity cathode materials with fast charge transport kinetics for hybrid batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星禾吾完成签到,获得积分10
刚刚
木子完成签到,获得积分10
刚刚
CodeCraft应助温暖雨采纳,获得10
刚刚
刚刚好完成签到,获得积分10
刚刚
迟大猫应助辛勤的夏彤采纳,获得30
刚刚
huichuanyin完成签到 ,获得积分10
刚刚
azaa完成签到,获得积分10
1秒前
1秒前
共享精神应助五條小羊采纳,获得10
1秒前
1秒前
咸鱼好翻身完成签到,获得积分10
2秒前
2秒前
2秒前
李健应助悦耳的妙竹采纳,获得10
2秒前
强砸完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
LZJ完成签到,获得积分10
3秒前
Huang_being完成签到,获得积分10
4秒前
HY完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
领导范儿应助TTT0530采纳,获得10
4秒前
有魅力的大船完成签到,获得积分10
5秒前
5秒前
幸福无声发布了新的文献求助10
6秒前
端庄优雅完成签到 ,获得积分10
6秒前
zl987发布了新的文献求助10
6秒前
董又又又又完成签到,获得积分10
6秒前
打打应助光亮妙之采纳,获得10
6秒前
李荷花完成签到 ,获得积分10
7秒前
7秒前
hyl-tcm完成签到,获得积分10
7秒前
搜集达人应助DAISHU采纳,获得10
7秒前
甜甜完成签到 ,获得积分10
8秒前
一颗橙子完成签到,获得积分10
8秒前
林深时见鹿完成签到,获得积分10
8秒前
陈师傅发布了新的文献求助10
8秒前
8秒前
zqqq发布了新的文献求助10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661640
求助须知:如何正确求助?哪些是违规求助? 3222598
关于积分的说明 9746930
捐赠科研通 2932253
什么是DOI,文献DOI怎么找? 1605569
邀请新用户注册赠送积分活动 757979
科研通“疑难数据库(出版商)”最低求助积分说明 734584