Multiple factors influence coal and gangue image recognition method and experimental research based on deep learning

煤矸石 照度 人工智能 水分 计算机科学 采矿工程 模式识别(心理学) 计算机视觉 环境科学 工程类 材料科学 废物管理 复合材料 天文 冶金 物理
作者
Man Li,Xianli He,Yinxue Yuan,Maolin Yang
出处
期刊:International Journal of Coal Preparation and Utilization [Taylor & Francis]
卷期号:43 (8): 1411-1427 被引量:1
标识
DOI:10.1080/19392699.2022.2118260
摘要

As for image-based recognition of coal and gangue, the image features are susceptible to the environment, which makes coal and gangue difficult to recognize and locate. We build a simulation experiment platform and construct an image dataset covering the scenarios of different illuminance, moisture, and belt speed. Moreover, in a combination of the YOLOv4 target detection algorithm and a mixed domain attention mechanism, we develop a detection model trained using our dataset. The recognition accuracy of coal, gangue, and coal and gangue combined are 98.2%, 99.0%, and 97.3%, respectively, and the recognition time was 32 ms. We then design an orthogonal experiment of coal and gangue recognition under the influence of three factors (illuminance, moisture content, and belt speed) and four levels and a range analysis. As a result, we obtain the weight sequence and the optimal combination of three factors. The experimental results show that moisture content has the highest influence on weight on recognition accuracy, followed by illuminance and belt speed. We further build the practical working condition simulation experiment platform and choose the illuminance to 4000lux, moisture content to 0.6%, and belt speed to 0.4 m/s to evaluate the recognition and location of coal and gangue on a moving belt. The recognition accuracy of coal, gangue, and the combination are 96%, 98% and 95%, respectively. The average location error of the X and Y coordinate is 5.6 mm and 7.3 mm, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ginger完成签到,获得积分10
刚刚
ncjyl完成签到,获得积分10
刚刚
小确幸发布了新的文献求助10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
研友_Z119gZ发布了新的文献求助10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
罗先生完成签到,获得积分10
8秒前
YYYY完成签到,获得积分10
9秒前
10秒前
12秒前
所所应助jacob258采纳,获得10
15秒前
15秒前
浮游应助Kaia采纳,获得10
16秒前
黄玉发布了新的文献求助10
16秒前
17秒前
uu发布了新的文献求助10
17秒前
答题不卡发布了新的文献求助10
17秒前
pky发布了新的文献求助20
19秒前
whisper完成签到,获得积分10
19秒前
科研通AI5应助Spyderman采纳,获得10
22秒前
伽翌完成签到,获得积分20
22秒前
23秒前
善学以致用应助陈进采纳,获得10
23秒前
Whisper应助琉琉硫采纳,获得30
23秒前
jinghong完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917