膨润土
Zeta电位
钻井液
材料科学
蒸馏水
化学工程
纳米颗粒
扫描电子显微镜
超声
立方氧化锆
流变学
傅里叶变换红外光谱
复合材料
色谱法
化学
纳米技术
钻探
冶金
陶瓷
工程类
作者
Udit Surya Mohanty,Adnan Aftab,Faisal Ur Rahman Awan,Muhammad Ali,Nurudeen Yekeen,Alireza Keshavarz,Stefan Iglauer
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2022-09-08
卷期号:36 (19): 12116-12125
被引量:8
标识
DOI:10.1021/acs.energyfuels.2c01864
摘要
Enhanced rheological and mud-filtrate loss characteristics of drilling muds are key to a successful drilling operation. Zirconium dioxide (ZrO2)/clay material (ZCNC) was synthesized using ultrasonication and characterized via scanning electron microscopy (SEM), X-ray diffraction, and Fourier-transform infrared spectroscopy. Moreover, the zeta potential of pristine zirconia and ZCNC was evaluated in distilled water to examine the stability of the colloidal material. Zeta potential measurements revealed that adding ZCNC to conventional water-based mud (WBM) exhibited a zeta potential similar to bentonite with very minute changes. Moreover, SEM revealed that zirconia nanoparticles formed a uniform layer on the bentonite surface. For the WBM, rheology and American Petroleum Institute (API) mud-filtrate loss are generally controlled using polymers, and these properties could also be improved by adding a minute concentration of synthesized ZCNC. Incorporating nanoparticles into the bentonite layer might augment the colloidal behavior of drilling mud and improve the rheological properties. The yield point was enhanced after adding 0.3 wt % of ZCNC. The gel strength improved by 60% after adding 0.6 wt % of ZCNC to a conventional WBM. A gradual increase in the ZCNC concentration to 0.6 wt % reduced the API mud-filtrate loss volume and minimized the mud-cake thickness. These characteristics could be attributed to coating bentonite layers with zirconia nanoparticles and plugging interparticle pore spaces in the mud system.
科研通智能强力驱动
Strongly Powered by AbleSci AI