Unbiased Detection of Posttranslational Modifications Using Mass Spectrometry

串联质谱法 鉴定(生物学) 质谱法 翻译后修饰 蛋白质组学 瓶颈 数据库搜索引擎 计算生物学 计算机科学 化学 组合化学 肽质量指纹图谱 色谱法 搜索引擎 生物 生物化学 情报检索 基因 嵌入式系统 植物
作者
Maria Fälth Savitski,Mikhail M. Savitski
出处
期刊:Methods in molecular biology 卷期号:: 203-210 被引量:10
标识
DOI:10.1007/978-1-60761-842-3_12
摘要

A major challenge in proteomics is to fully identify and characterize posttranslational modification (PTM) patterns present at any given time in cells, tissues, and organisms. Currently, the most frequently used method for identifying PTMs is tandem mass spectrometry combined with searching a protein sequence database. Although, database searching has been highly successful for the identification of proteins, it has a number of significant drawbacks for identification of modifications. The user needs to specify all expected modifications, and the search engine needs to consider all possible combinations of these modifications for all peptide sequences. If several potential modifications are considered, the search can take much longer than the data acquisition, creating a bottleneck in high-throughput analysis. In addition, the many possible assignments that need to be tested increase the noise and require better quality data for confident identification of modifications. Here, we describe a method for identifying both known and unknown PTM using mass spectrometry that does not suffer from these problems. The method is based on the observation that, in many samples, peptides are usually present both with and without modifications. By identifying the unmodified peptide with conventional database searches, the modified species of the peptide can be identified by searching for peptides with common and similar fragments as the unmodified peptide. After identifying both the modified and unmodified peptide, the elemental composition of the modification can be deduced if the mass accuracy of the precursor ion is sufficiently high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助30
刚刚
1秒前
华仔应助sekidesu采纳,获得10
1秒前
2秒前
3秒前
追寻紫安发布了新的文献求助10
4秒前
5秒前
谷雨下完成签到,获得积分10
6秒前
萧水白应助怕黑翠采纳,获得10
7秒前
8秒前
Dnan发布了新的文献求助10
8秒前
SinU应助阔达小懒虫采纳,获得10
9秒前
华仔应助maxi采纳,获得10
9秒前
9秒前
10秒前
心灵美芯发布了新的文献求助10
10秒前
wxyes完成签到,获得积分20
10秒前
纪震宇发布了新的文献求助10
11秒前
CipherSage应助追寻紫安采纳,获得10
11秒前
小肥兔完成签到 ,获得积分10
11秒前
赵康康发布了新的文献求助10
12秒前
顺利的绿真给顺利的绿真的求助进行了留言
12秒前
单薄新烟完成签到,获得积分10
13秒前
熊熊面包应助酥糖采纳,获得10
13秒前
13秒前
14秒前
ZHAO完成签到,获得积分10
14秒前
大个应助wxyes采纳,获得10
14秒前
FashionBoy应助申思采纳,获得10
16秒前
hyx9504发布了新的文献求助10
18秒前
19秒前
呆瓜发布了新的文献求助10
19秒前
20秒前
ww007完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
我是老大应助耍酷的白山采纳,获得10
24秒前
25秒前
drift发布了新的文献求助10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570