DBN versus HMM for Gesture Recognition in Human-Robot Interaction

手势 计算机科学 隐马尔可夫模型 手势识别 接口(物质) 人机交互 机器人 人工智能 语音识别 人机交互 背景(考古学) 用户界面 计算机视觉 古生物学 气泡 最大气泡压力法 并行计算 生物 操作系统
作者
Brice Burger,Guillaume Infantes,Isabelle Ferrané,Frédéric Lerasle
摘要

Abstract: We designed an easy-to-use user interface based on speech and gesture modalities for controling an interactive robot. This paper, after a brief description of this interface and the platform on which it is implemented, describes an embedded gesture recognition system which is part of this multimodal interface. We describe two methods, namely Hidden Markov Models and Dynamic Bayesian Networks, and discuss their relative performance for this task in our Human-Robot interaction context. The implementation of our DBN-based recognition is outlined and some quantitative results are shown. I. INTRODUCTIONSince assistant robots are designed to directly interact with people, finding natural and easy-to-use user interfaces is of fundamental importance [1]. Nevertheless, few robotic systems are currently equipped with a completely on-board multimodal user interface enabling robot control through communication channels like speech, gesture or both. The most advanced one is [2] in which a constraint based multimodal system for speech and 3D pointing gestures has been developed, but gesture recognition is limited to mono-manual pointing gestures. In other works, like [3] and [4], gesture recognition is often extracted from monocular images, loosing the depth information and thus losing the capability of dealing with a pointing gesture other than directional. With the intention of providing our interactive robot called Jido with such an interface, we developed both speech and gesture recognition systems as well as a module for fusing these two information results. This merging step enables to:− complete an underspecified sentence, an abbreviation or an omission, which is usual in human communication particularly if a gesture can be done or even used instead− strengthen each modality by improving the classification rates of multimodal commands thanks to a probabilistic merge of gesture and speech recognition results.In this framework, this paper focuses on our one- and two-handed gesture recognition system given the video stream delivered by the on-board stereo head, with the physical constraints imposed by autonomous robotic systems in background: mobility of the platform, limited and shared computational power, limited memory capacities, etc.First section describes as a background our platform and the interface we developed on it, leading to an explanation of our needs in gesture recognition. Next, we discuss the relative performance of Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN) for such a task, given the output of our 3D visual tracker devoted to the upper human body extremities [5]. Then, the implementation of our DBN-based recognition is outlined. We describe more precisely the data clustering process which is carried out thanks to a Kohonen network, the model training made by means of an Expectation-Maximization based algorithm and the recognition performed using particle filtering [6]. Finally, some qualitative and quantitative results from a symbolic and deictic gesture database are presented. The DBN representation, which is commonly used for human activity recognition, is shown to outperform the HMM representation especially in terms of CPU time consuming and gesture segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
keyantong完成签到 ,获得积分10
4秒前
booshu完成签到,获得积分10
5秒前
jy发布了新的文献求助10
6秒前
朴斓完成签到,获得积分10
6秒前
科研通AI5应助魏伯安采纳,获得10
9秒前
哈密哈密完成签到,获得积分10
9秒前
9秒前
Ava应助浪迹天涯采纳,获得10
9秒前
10秒前
安南发布了新的文献求助10
10秒前
11秒前
healthy完成签到 ,获得积分10
11秒前
12秒前
刘大可完成签到,获得积分10
12秒前
15秒前
su发布了新的文献求助10
15秒前
rookie发布了新的文献求助10
16秒前
方勇飞发布了新的文献求助10
17秒前
郭菱香完成签到 ,获得积分20
17秒前
皮念寒完成签到,获得积分10
17秒前
顺其自然_666888完成签到,获得积分10
17秒前
18秒前
向上的小v完成签到 ,获得积分10
19秒前
19秒前
21秒前
酷酷紫蓝完成签到 ,获得积分10
21秒前
21秒前
方勇飞完成签到,获得积分10
21秒前
LYZ完成签到,获得积分10
21秒前
黄景滨完成签到 ,获得积分20
22秒前
22秒前
123456完成签到,获得积分20
22秒前
hkl1542完成签到,获得积分10
23秒前
23秒前
caohuijun发布了新的文献求助10
24秒前
杳鸢应助韦颖采纳,获得20
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824