清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DBN versus HMM for Gesture Recognition in Human-Robot Interaction

手势 计算机科学 隐马尔可夫模型 手势识别 接口(物质) 人机交互 机器人 人工智能 语音识别 人机交互 背景(考古学) 用户界面 计算机视觉 古生物学 气泡 最大气泡压力法 并行计算 生物 操作系统
作者
Brice Burger,Guillaume Infantes,Isabelle Ferrané,Frédéric Lerasle
摘要

Abstract: We designed an easy-to-use user interface based on speech and gesture modalities for controling an interactive robot. This paper, after a brief description of this interface and the platform on which it is implemented, describes an embedded gesture recognition system which is part of this multimodal interface. We describe two methods, namely Hidden Markov Models and Dynamic Bayesian Networks, and discuss their relative performance for this task in our Human-Robot interaction context. The implementation of our DBN-based recognition is outlined and some quantitative results are shown. I. INTRODUCTIONSince assistant robots are designed to directly interact with people, finding natural and easy-to-use user interfaces is of fundamental importance [1]. Nevertheless, few robotic systems are currently equipped with a completely on-board multimodal user interface enabling robot control through communication channels like speech, gesture or both. The most advanced one is [2] in which a constraint based multimodal system for speech and 3D pointing gestures has been developed, but gesture recognition is limited to mono-manual pointing gestures. In other works, like [3] and [4], gesture recognition is often extracted from monocular images, loosing the depth information and thus losing the capability of dealing with a pointing gesture other than directional. With the intention of providing our interactive robot called Jido with such an interface, we developed both speech and gesture recognition systems as well as a module for fusing these two information results. This merging step enables to:− complete an underspecified sentence, an abbreviation or an omission, which is usual in human communication particularly if a gesture can be done or even used instead− strengthen each modality by improving the classification rates of multimodal commands thanks to a probabilistic merge of gesture and speech recognition results.In this framework, this paper focuses on our one- and two-handed gesture recognition system given the video stream delivered by the on-board stereo head, with the physical constraints imposed by autonomous robotic systems in background: mobility of the platform, limited and shared computational power, limited memory capacities, etc.First section describes as a background our platform and the interface we developed on it, leading to an explanation of our needs in gesture recognition. Next, we discuss the relative performance of Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN) for such a task, given the output of our 3D visual tracker devoted to the upper human body extremities [5]. Then, the implementation of our DBN-based recognition is outlined. We describe more precisely the data clustering process which is carried out thanks to a Kohonen network, the model training made by means of an Expectation-Maximization based algorithm and the recognition performed using particle filtering [6]. Finally, some qualitative and quantitative results from a symbolic and deictic gesture database are presented. The DBN representation, which is commonly used for human activity recognition, is shown to outperform the HMM representation especially in terms of CPU time consuming and gesture segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚子完成签到 ,获得积分10
7秒前
51秒前
53秒前
jiejie完成签到,获得积分10
1分钟前
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
耍酷平凡完成签到,获得积分10
2分钟前
荔枝发布了新的文献求助10
2分钟前
2分钟前
连安阳完成签到,获得积分10
2分钟前
3分钟前
荔枝发布了新的文献求助10
3分钟前
丁老三完成签到 ,获得积分10
4分钟前
4分钟前
Jim发布了新的文献求助10
5分钟前
5分钟前
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
Unlisted发布了新的文献求助10
5分钟前
落寞的又菡完成签到,获得积分10
5分钟前
6分钟前
端庄洪纲完成签到 ,获得积分10
6分钟前
6分钟前
米修发布了新的文献求助10
7分钟前
7分钟前
米修完成签到,获得积分20
7分钟前
CodeCraft应助居家小可采纳,获得10
7分钟前
7分钟前
苗苗发布了新的文献求助10
7分钟前
8分钟前
苗苗完成签到 ,获得积分10
8分钟前
loathebm发布了新的文献求助10
8分钟前
NexusExplorer应助loathebm采纳,获得10
8分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
8分钟前
9分钟前
居家小可发布了新的文献求助10
9分钟前
我睡觉的时候不困完成签到 ,获得积分10
9分钟前
居家小可完成签到,获得积分10
9分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108