DBN versus HMM for Gesture Recognition in Human-Robot Interaction

手势 计算机科学 隐马尔可夫模型 手势识别 接口(物质) 人机交互 机器人 人工智能 语音识别 人机交互 背景(考古学) 用户界面 计算机视觉 古生物学 气泡 最大气泡压力法 并行计算 生物 操作系统
作者
Brice Burger,Guillaume Infantes,Isabelle Ferrané,Frédéric Lerasle
摘要

Abstract: We designed an easy-to-use user interface based on speech and gesture modalities for controling an interactive robot. This paper, after a brief description of this interface and the platform on which it is implemented, describes an embedded gesture recognition system which is part of this multimodal interface. We describe two methods, namely Hidden Markov Models and Dynamic Bayesian Networks, and discuss their relative performance for this task in our Human-Robot interaction context. The implementation of our DBN-based recognition is outlined and some quantitative results are shown. I. INTRODUCTIONSince assistant robots are designed to directly interact with people, finding natural and easy-to-use user interfaces is of fundamental importance [1]. Nevertheless, few robotic systems are currently equipped with a completely on-board multimodal user interface enabling robot control through communication channels like speech, gesture or both. The most advanced one is [2] in which a constraint based multimodal system for speech and 3D pointing gestures has been developed, but gesture recognition is limited to mono-manual pointing gestures. In other works, like [3] and [4], gesture recognition is often extracted from monocular images, loosing the depth information and thus losing the capability of dealing with a pointing gesture other than directional. With the intention of providing our interactive robot called Jido with such an interface, we developed both speech and gesture recognition systems as well as a module for fusing these two information results. This merging step enables to:− complete an underspecified sentence, an abbreviation or an omission, which is usual in human communication particularly if a gesture can be done or even used instead− strengthen each modality by improving the classification rates of multimodal commands thanks to a probabilistic merge of gesture and speech recognition results.In this framework, this paper focuses on our one- and two-handed gesture recognition system given the video stream delivered by the on-board stereo head, with the physical constraints imposed by autonomous robotic systems in background: mobility of the platform, limited and shared computational power, limited memory capacities, etc.First section describes as a background our platform and the interface we developed on it, leading to an explanation of our needs in gesture recognition. Next, we discuss the relative performance of Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN) for such a task, given the output of our 3D visual tracker devoted to the upper human body extremities [5]. Then, the implementation of our DBN-based recognition is outlined. We describe more precisely the data clustering process which is carried out thanks to a Kohonen network, the model training made by means of an Expectation-Maximization based algorithm and the recognition performed using particle filtering [6]. Finally, some qualitative and quantitative results from a symbolic and deictic gesture database are presented. The DBN representation, which is commonly used for human activity recognition, is shown to outperform the HMM representation especially in terms of CPU time consuming and gesture segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
倪小呆完成签到 ,获得积分10
1秒前
hyggg完成签到,获得积分20
1秒前
小魏同学完成签到,获得积分10
2秒前
sunmi完成签到,获得积分10
2秒前
2秒前
宋芝恬完成签到,获得积分10
3秒前
五月拾旧完成签到,获得积分10
4秒前
NB完成签到,获得积分10
4秒前
4秒前
nyfz2002发布了新的文献求助10
4秒前
独自受罪完成签到 ,获得积分10
4秒前
4秒前
chen完成签到 ,获得积分10
5秒前
浪费青春传奇完成签到,获得积分10
5秒前
sunrise完成签到,获得积分10
6秒前
知性的绮兰完成签到,获得积分10
6秒前
kk完成签到,获得积分10
6秒前
莫荆完成签到,获得积分10
7秒前
lanlan完成签到,获得积分10
7秒前
djbj2022发布了新的文献求助10
7秒前
8秒前
medzhou完成签到,获得积分10
8秒前
kingwhitewing发布了新的文献求助10
9秒前
wangwei完成签到 ,获得积分10
9秒前
Chen完成签到,获得积分10
9秒前
兢兢业业者完成签到,获得积分20
9秒前
10秒前
zhang完成签到,获得积分10
11秒前
swing发布了新的文献求助10
12秒前
大雪完成签到 ,获得积分10
12秒前
隔水一路秋完成签到,获得积分10
13秒前
Csea完成签到,获得积分10
13秒前
labxgr完成签到,获得积分10
13秒前
Haley发布了新的文献求助10
14秒前
小学生1005完成签到,获得积分10
14秒前
阿峰发布了新的文献求助10
14秒前
anyang完成签到,获得积分10
14秒前
briliian完成签到,获得积分10
15秒前
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3326918
求助须知:如何正确求助?哪些是违规求助? 2957197
关于积分的说明 8583900
捐赠科研通 2635137
什么是DOI,文献DOI怎么找? 1442366
科研通“疑难数据库(出版商)”最低求助积分说明 668210
邀请新用户注册赠送积分活动 655109