DBN versus HMM for Gesture Recognition in Human-Robot Interaction

手势 计算机科学 隐马尔可夫模型 手势识别 接口(物质) 人机交互 机器人 人工智能 语音识别 人机交互 背景(考古学) 用户界面 计算机视觉 操作系统 最大气泡压力法 古生物学 气泡 生物 并行计算
作者
Brice Burger,Guillaume Infantes,Isabelle Ferrané,Frédéric Lerasle
摘要

Abstract: We designed an easy-to-use user interface based on speech and gesture modalities for controling an interactive robot. This paper, after a brief description of this interface and the platform on which it is implemented, describes an embedded gesture recognition system which is part of this multimodal interface. We describe two methods, namely Hidden Markov Models and Dynamic Bayesian Networks, and discuss their relative performance for this task in our Human-Robot interaction context. The implementation of our DBN-based recognition is outlined and some quantitative results are shown. I. INTRODUCTIONSince assistant robots are designed to directly interact with people, finding natural and easy-to-use user interfaces is of fundamental importance [1]. Nevertheless, few robotic systems are currently equipped with a completely on-board multimodal user interface enabling robot control through communication channels like speech, gesture or both. The most advanced one is [2] in which a constraint based multimodal system for speech and 3D pointing gestures has been developed, but gesture recognition is limited to mono-manual pointing gestures. In other works, like [3] and [4], gesture recognition is often extracted from monocular images, loosing the depth information and thus losing the capability of dealing with a pointing gesture other than directional. With the intention of providing our interactive robot called Jido with such an interface, we developed both speech and gesture recognition systems as well as a module for fusing these two information results. This merging step enables to:− complete an underspecified sentence, an abbreviation or an omission, which is usual in human communication particularly if a gesture can be done or even used instead− strengthen each modality by improving the classification rates of multimodal commands thanks to a probabilistic merge of gesture and speech recognition results.In this framework, this paper focuses on our one- and two-handed gesture recognition system given the video stream delivered by the on-board stereo head, with the physical constraints imposed by autonomous robotic systems in background: mobility of the platform, limited and shared computational power, limited memory capacities, etc.First section describes as a background our platform and the interface we developed on it, leading to an explanation of our needs in gesture recognition. Next, we discuss the relative performance of Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN) for such a task, given the output of our 3D visual tracker devoted to the upper human body extremities [5]. Then, the implementation of our DBN-based recognition is outlined. We describe more precisely the data clustering process which is carried out thanks to a Kohonen network, the model training made by means of an Expectation-Maximization based algorithm and the recognition performed using particle filtering [6]. Finally, some qualitative and quantitative results from a symbolic and deictic gesture database are presented. The DBN representation, which is commonly used for human activity recognition, is shown to outperform the HMM representation especially in terms of CPU time consuming and gesture segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾无忧发布了新的文献求助10
刚刚
星辰大海应助池鱼思故渊采纳,获得30
刚刚
一刀完成签到,获得积分10
1秒前
Stella应助GC采纳,获得10
1秒前
迅速的易巧完成签到 ,获得积分10
2秒前
2秒前
2秒前
大胆的忆寒完成签到,获得积分10
2秒前
如常发布了新的文献求助10
2秒前
充电宝应助Rr采纳,获得10
2秒前
cyuan发布了新的文献求助10
2秒前
欣喜谷槐完成签到,获得积分10
2秒前
ccepted1122给ccepted1122的求助进行了留言
3秒前
3秒前
3秒前
啊炜发布了新的文献求助200
3秒前
董卓小蛮腰完成签到,获得积分10
3秒前
wwwww完成签到,获得积分10
4秒前
4秒前
mk发布了新的文献求助10
4秒前
4秒前
0range完成签到,获得积分10
4秒前
知秋发布了新的文献求助10
4秒前
mmmm完成签到,获得积分10
5秒前
GuanguanYaa发布了新的文献求助10
5秒前
hsy309完成签到,获得积分10
5秒前
NN发布了新的文献求助30
6秒前
嘲鸫完成签到,获得积分10
6秒前
刘胖胖发布了新的文献求助30
6秒前
6秒前
李晓彤发布了新的文献求助10
7秒前
7秒前
洁净的元蝶完成签到,获得积分10
7秒前
安静的映萱完成签到,获得积分10
7秒前
香蕉冰真发布了新的文献求助10
7秒前
pray完成签到,获得积分20
8秒前
照亮世界的ay完成签到,获得积分10
8秒前
城南以南发布了新的文献求助10
9秒前
13击发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017