DBN versus HMM for Gesture Recognition in Human-Robot Interaction

手势 计算机科学 隐马尔可夫模型 手势识别 接口(物质) 人机交互 机器人 人工智能 语音识别 人机交互 背景(考古学) 用户界面 计算机视觉 古生物学 气泡 最大气泡压力法 并行计算 生物 操作系统
作者
Brice Burger,Guillaume Infantes,Isabelle Ferrané,Frédéric Lerasle
摘要

Abstract: We designed an easy-to-use user interface based on speech and gesture modalities for controling an interactive robot. This paper, after a brief description of this interface and the platform on which it is implemented, describes an embedded gesture recognition system which is part of this multimodal interface. We describe two methods, namely Hidden Markov Models and Dynamic Bayesian Networks, and discuss their relative performance for this task in our Human-Robot interaction context. The implementation of our DBN-based recognition is outlined and some quantitative results are shown. I. INTRODUCTIONSince assistant robots are designed to directly interact with people, finding natural and easy-to-use user interfaces is of fundamental importance [1]. Nevertheless, few robotic systems are currently equipped with a completely on-board multimodal user interface enabling robot control through communication channels like speech, gesture or both. The most advanced one is [2] in which a constraint based multimodal system for speech and 3D pointing gestures has been developed, but gesture recognition is limited to mono-manual pointing gestures. In other works, like [3] and [4], gesture recognition is often extracted from monocular images, loosing the depth information and thus losing the capability of dealing with a pointing gesture other than directional. With the intention of providing our interactive robot called Jido with such an interface, we developed both speech and gesture recognition systems as well as a module for fusing these two information results. This merging step enables to:− complete an underspecified sentence, an abbreviation or an omission, which is usual in human communication particularly if a gesture can be done or even used instead− strengthen each modality by improving the classification rates of multimodal commands thanks to a probabilistic merge of gesture and speech recognition results.In this framework, this paper focuses on our one- and two-handed gesture recognition system given the video stream delivered by the on-board stereo head, with the physical constraints imposed by autonomous robotic systems in background: mobility of the platform, limited and shared computational power, limited memory capacities, etc.First section describes as a background our platform and the interface we developed on it, leading to an explanation of our needs in gesture recognition. Next, we discuss the relative performance of Hidden Markov Models (HMM) and Dynamic Bayesian Networks (DBN) for such a task, given the output of our 3D visual tracker devoted to the upper human body extremities [5]. Then, the implementation of our DBN-based recognition is outlined. We describe more precisely the data clustering process which is carried out thanks to a Kohonen network, the model training made by means of an Expectation-Maximization based algorithm and the recognition performed using particle filtering [6]. Finally, some qualitative and quantitative results from a symbolic and deictic gesture database are presented. The DBN representation, which is commonly used for human activity recognition, is shown to outperform the HMM representation especially in terms of CPU time consuming and gesture segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yy完成签到 ,获得积分10
4秒前
Nayvue发布了新的文献求助10
6秒前
feng完成签到,获得积分10
6秒前
淡淡的小蘑菇完成签到 ,获得积分10
9秒前
G_Serron完成签到,获得积分10
10秒前
swordshine完成签到,获得积分10
10秒前
Anonymous完成签到,获得积分10
14秒前
medzhou完成签到,获得积分10
18秒前
儒雅的千秋完成签到,获得积分10
26秒前
普鲁卡因发布了新的文献求助10
29秒前
小雯完成签到,获得积分10
30秒前
搞怪梦寒完成签到,获得积分20
31秒前
喵了个咪完成签到 ,获得积分10
32秒前
mc完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
38秒前
虚幻谷波完成签到,获得积分10
40秒前
ruochenzu发布了新的文献求助10
43秒前
小马甲应助搞怪梦寒采纳,获得10
45秒前
firewood完成签到 ,获得积分10
46秒前
天天快乐应助普鲁卡因采纳,获得10
48秒前
orixero应助NXK采纳,获得10
48秒前
bjr完成签到 ,获得积分10
50秒前
研友_LwlAgn完成签到,获得积分10
54秒前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
1分钟前
1分钟前
龙舞星完成签到,获得积分10
1分钟前
1分钟前
王涉发布了新的文献求助10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
柚子完成签到,获得积分10
1分钟前
1分钟前
马儿饿了要吃草完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022